
Using the CASM Language for Simulator Synthesis and
Model Verification ∗

Roland Lezuo
Vienna University of Technology

Institute of Computer Languages (E185)
Argentinierstraße 8

1040 Vienna, Austria
rlezuo@complang.tuwien.ac.at

Andreas Krall
Vienna University of Technology

Institute of Computer Languages (E185)
Argentinierstraße 8

1040 Vienna, Austria
andi@complang.tuwien.ac.at

ABSTRACT
We present the CASM language, an abstract state machine
(ASM) based modeling language originally designed for veri-
fying compiler backends. We demonstrate the expressiveness
by describing an instruction set simulator (ISS) for MIPS
in approximately 700 lines of code. Further we present a
refinement of the models to cycle-accurately describe two
implementations of the classic 5-stage MIPS pipeline. Uti-
lizing symbolic execution allows us to prove semantic equiv-
alence of the pipeline implementations and the instruction
set description. Finally we compile the models to C++
and provide a small runtime to create a system simulator
achieving a performance of approx. 1 MHz in MiBench and
SPECInt2000 benchmarks.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Specification language; D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model verification

Keywords
ASM, Simulator Synthesis, Correctness Proofs

1. INTRODUCTION
Simulators are commonly used when developing embedded
applications. Instruction Set Simulation (ISS) is among
other things useful for debugging. Embedded applications
are often difficult to debug in their execution environment.
Running the application in a simulator may simplify produc-
ing error conditions and watching the program behavior. ISS
are tuned for performance, simulating only what is needed
for correct program semantics [7]. They often lack accu-
racy needed for detailed performance analysis [24]. Cycle-

∗This work is partially supported by the Austrian Research
Promotion Agency (FFG) under contract 827485, Correct
Compilers for Correct Application Specific Processors and
Catena DSP GmbH.

c⃝2012 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the national government of Austria. As such, the government
of Austria retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
RAPIDO ’13, January 21 2013, Berlin, Germany
Copyright 2012 ACM 978-1-4503-1539-5/13/01...$15.00

accurate simulation also simulates the behavior of pipelines
and caches to achieve a much better estimation of the ap-
plication’s timing on real hardware. Due to the increased
simulation effort, performance of cycle-accurate simulation
is usually much lower. To execute complex embedded appli-
cations an environment has to be provided as well. Examples
are file systems, interrupt controllers and other peripheral
components. The resulting simulator is called a system sim-
ulator.

For many applications quick exploration of the design space
is an important feature. How do changes in a processor’s
pipeline affect performance? Do they produce observable
changes to execution semantics? The ability to quickly adapt
the simulator to a changing instruction set may also be a de-
sirable property, i.e. for an architecture under development.

In this paper we present the CASM language and demon-
strate its usefulness for simulator generation. For this pur-
pose we created high-level models of the MIPS instruction
set. These models describe the observable semantics of MIPS
instructions, their effects to observable machine state like
registers and memory. We then refined these high-level
models to describe execution in a classic 5-stage pipeline
and modeled two different pipeline implementations. 1) A
pipeline implementing operand forwarding and 2) a stalling
pipeline inserting so called bubbles when a data hazard is
detected.

We originally designed the CASM language to be used for
compiler backend verification. The same CASM processor
model can be used for compiler verification and processor
simulation. CASM is capable of symbolic execution, which
we use to perform model verification [20]. We are able to
prove pipelined instruction models to be semantically equiv-
alent to high-level models, which prevented any instruction
model errors slipping into the simulators.

The remainder of the paper is structured as follows, section
2 introduces the CASM language, in section 3 we present
the (almost) complete models for the MIPS architecture, in
section 4 we present details about validation of the pipelined
models. Section 5 gives details about the simulator runtime
and in section 6 we present benchmark results for the gener-
ated simulators. Related work is discussed in section 7 and
the paper concludes in section 8.

2. CASM LANGUAGE
The CASM language is a refinement of the Abstract State
Machine (ASM) [8] language described by Gurevich [12].
ASMs define a synchronous parallel execution model which
is ideal to model cycled circuits like micro-processors.

The main concept of ASMs is the state, which is a set of
functions, comparable to global variables in other program-
ming languages. So called rules are executed and produce
sets of updates which are applied atomically to the state
when the rule concludes (returns). Rules may invoke other
rules, in this case the update set produced by the invoked
rule is not applied to the state but merged into the calling
rule’s update set.

A common extension to ASMs is sequential composition [5],
which allows to write models more like traditional programs.
CASM supports sequential ASM with the seqblock state-
ment. A seqblock acts as if each update set is applied to
the state before the next statement is evaluated (as opposed
to the parallel execution normally performed). However,
no changes to the global state are made. The update set
produced by a seqblock describes the difference between the
initial state and the state resulting from sequentially exe-
cuting all statements of the block. The implementation of a
swap (listing 1) points out the difference. The := operator
is used to express an update to a function, whereas the let
statement purely binds a name to the given expression. let
does not induce any updates.

rule swap = { // parallel
x := y
y := x

} // values of x and y swapped

rule swap =
let temp = x in // temporarily store x

seqblock
x := y
y := temp

endseqblock

Listing 1: parallel and sequential swap

One design goal of the CASM language is the ability to be
compiled into efficient code. The syntax of the language
is inspired by CoreASM [10], but CASM added a static
type system. ASM defines arguments to be passed by name
which is difficult to implement efficiently [3]. CASM of-
fers a call statement which evaluates all arguments before
passing them. This way all arguments are constant values
and pass-by-name is equivalent to pass-by-value. With this
modification good performance of the generated code can be
achieved [15].

ASM defines external functions as a way to communicate
with the environment of a model. In CASM external func-
tions are used to implement a domain specific vocabulary.
Whilst originally intended to express symbolic operations
on variable sized bit vectors (which, in conjunction with a
set of axioms, are used to perform proofs) those functions
can be concretely implemented and form building blocks for
the instruction description. One example of such functions
is BVadd result(32, a, b) which performs a 32 bit addition
using the 32 bit values a and b.

3. MODELS
In this section we present the models of the high-level and
the classic 5-stage pipelined MIPS machine. An excellent
description of the MIPS architecture is given by Patterson
and Hennessy [17]. Wikipedias Classic RISC pipeline 1 arti-
cle can also be recommended. Because of the expressiveness
of the CASM language we are able to present the essential
parts of the models and only skip a few initialization rules.
The complete models consist of approx. 100 lines of code
(LOC) (plus another 600 LOC to describe all instructions)
for the high-level and approx. 400 LOC (plus 1500 LOC in-
structions) for the pipelined models. This is a quite concise
specification compared to the 1054 LOC of a similar model
in xADL, a specialized processor description language on a
high abstraction level [6].

3.1 The State
Listing 2 gives the definition of the observable state of the
MIPS architecture. The MEMORY function models the sys-
tem memory and contains data and instructions. The func-
tions PARG and PMEM are used as cache for decoded in-
structions. PARG contains decoded fields and PMEM con-
tains the instruction itself. The function GPR (general pur-
pose registers) is used to model the MIPS register set. Regis-
ter 0 is always read as 0 and discards all writes. PC contains
the program counter. BRANCH contains the calculated tar-
get address and is jumped to after the instruction in the
delay slot has been executed. CYCLES is used to count the
executed instructions, and trapped is set when a system trap
condition is fulfilled. An implementation of the processor
may add more function to the state, e.g. pipeline registers.

enum FieldValues = { FV_RS ,FV_RT ,FV_IMM ,... }

function MEMORY : Int -> Int

function PARG: Int * FieldValues -> Int
function PMEM: Int -> RuleRef

function GPR : Int -> Int
function LO : -> Int
function HI : -> Int
function PC : -> Int

function BRANCH : -> Int

function CYCLES : -> Int
function trapped : -> Boolean

Listing 2: MIPS observable state

3.2 Instructions
The instructions operate on the state given in the previous
section. As guiding example the addiu instruction is used.
addiu adds an immediate value to a register, the immediate
value needs to be sign-extended, the register containing the
source operands is encoded in the field rs and the destination
register is encoded in field rt.

Listing 3 shows the high-level description of addiu and the
write reg rule. write reg models the fact that all writes to
register 0 are discarded.

1http://en.wikipedia.org/wiki/Classic_RISC_
pipeline

rule write_reg(reg : Int , val : Int) =
if reg != 0 then

GPR(reg) := val

rule addiu(addr : Int) =
let rs = PARG(addr , FV_RS) in
let rt = PARG(addr , FV_RT) in
let imm = PARG(addr , FV_IMM) in

ca l l (write_reg)(rt, BVadd_result (32, GPR(rs),
BVSignExtend(imm , 16, 32)))

Listing 3: ADDIU high-level model

Listing 4 shows the pipelined description of the addiu in-
struction. Each stage is further divided into 2 phases to
model the fact that hardware signals can be produced and
consumed in the same clock cycle. All signals are produced
during the begin phase and are consumed during the end
phase. In particular, registers are written in the begin phase
of the write-back (WB) stage and are read during the end
phase of the ID stage.

enum PipelineStages = {ID, EX, MEM , WB}
enum PipelinePhases = {begin , end}

rule addiu(addr:Int , stage:Int , phase:Int) =
{

i f stage = ID then
i f phase = end then
let rs = PARG(addr , FV_RS) in
let rt = PARG(addr , FV_RT) in
let imm = PARG(addr , FV_IMM) in
{

ca l l (ID_READ_OP1)(rs)
IDOP2 := BVSignExtend(imm , 16, 32)
IDRESREG := rt

}

i f stage = EX then
i f phase = begin then

EXRES := BVadd_result (32, EXOP1 , EXOP2)

i f stage = WB then
i f phase = begin then

ca l l (write_reg)(WBRESREG , WBRES)
}

Listing 4: ADDIU pipelined model

3.3 High-level execution semantics
To execute the high-level instruction the rule given in listing
5 is sufficient. It executes the instruction at the current
program counter and either takes a pending branch or simply
increases the program counter. Execution stops when a trap
occurred (program(self) := undef is the CASM idiom for
terminating the program). The call instruction invokes the
instruction model (PMEM(PC) yields a reference to a rule)
at address PC and passes the current program counter as
argument. PC is then used to fetch instruction fields (see
listing 3).

rule run_program =
let branch = BRANCH in

seqblock
ca l l (PMEM(PC))(PC)
CYCLES := CYCLES + 1

i f branch = undef then
PC := PC + 4

else {
PC := BRANCH
BRANCH := undef

}
i f trapped then

program(self) := undef
endseqblock

Listing 5: Simulator Main Rule (high-level)

3.4 Pipeline with Forwarding
To implement operand forwarding, data words may need to
be fetched from pipelined registers instead of accessing the
register file, which still contains the old value. The rule
ID READ OP is used to model this. It may need to for-
ward the value from the EX or MEM stage. As registers are
written in the begin phase of the WB stage, no special for-
warding needs to be implemented for the WB stage. Listing
6 shows the implementation.

rule ID_READ_OP1(reg : Int) =
i f EXRESREG = reg then

IDOP1 := EXRES
else

i f MEMRESREG = reg then
IDOP1 := MEMRES

else
IDOP1 := GPR(reg)

Listing 6: Operand fetch (forwarding)

The parallel execution semantics of the CASM language al-
low to easily write a rule to model the simultaneous execu-
tion of all pipeline stages (listing 7). Although the stages are
split into a begin and a end phase their (combined) effects
must be applied to the state atomically. This is what the
seqblock ensures.

rule execute_pipeline =
seqblock

fora l l s in PipelineStages do
let op = pipeline(s) in

i f op != undef then
ca l l (PMEM(op))(op, s, begin)

f o ra l l s in PipelineStages do
let op = pipeline(s) in

i f op != undef then
ca l l (PMEM(op))(op, s, end)

endseqblock

Listing 7: Parallel execution of all pipeline stages

Listing 8 shows the implementation of the instruction fetch
logic. The omitted rule step pipeline simply moves each
pipelined register and each instruction into the next stage.
A new instruction is fetched from PC and transfered into
the pipeline (stage ID). Any pending branches are handled
subsequently, implementing the branch delay slot.

rule IF_stage =
let branch = BRANCH in
seqblock

step_pipeline
pipeline(ID) := PC

i f branch = undef then
PC := PC + 4

else {
PC := BRANCH
BRANCH := undef

}
endseqblock

Listing 8: Instruction fetch (forwarding)

The main rule is shown in listing 9 and executed repeatedly
until program(self) becomes undef. Unless a trap condition
has been generated by any of the instructions this rule either
executes the pipeline or fetches an instruction depending on
the boolean value of execute pipeline. This alternate execu-
tion of fetching and executing produces update sets which
are very useful for tracing the program run. The update set
produced (alternately) describe an instruction fetch and all
operations performed by the instruction in the pipeline. The
dumps annotation prints updates to the named functions to
a debug stream (trace). Debug streams can selectively be
enabled by providing command line switches to the simula-
tor.

rule run_program dumps (GPR , LO, HI) -> trace =
i f trapped then {

dump_machine_state
program(self) := undef

} else
i f pipeline_execute then {

execute_pipeline
pipeline_execute := false

} else {
IF_stage
pipeline_execute := true

}

Listing 9: Simulator Main Rule (pipeline)

3.5 Bubbling pipeline
To demonstrate the ease of modeling using the CASM lan-
guage we also developed a model for a bubbling pipeline.
In such a pipeline a no operation (NOP, bubble) is auto-
matically inserted if a data hazard is detected by the hard-
ware. To model this we need to change the definition of
the ID READ OP rules. Listing 10 shows the new defini-
tion. Instead of forwarding the result a function is set to
true, signaling that a data hazard has occurred. The def-
inition of the instructions does not need to be changed at all.

rule ID_READ_OP1(reg : Int) =
i f EXRESREG = reg then

BUBBLE1 := true
else

i f MEMRESREG = reg then
BUBBLE1 := true

else
IDOP1 := GPR(reg)

Listing 10: Operand fetch (bubbling)

In addition the IF stage rule has to be modified, the new
definition is shown in listing 11. If any operand fetch trig-
gered a data hazard the pipeline is stalled, the calculated
branch target address is invalidated and no new instruction
is fetched.

rule IF_stage =
let branch = BRANCH in
let bubble = (BUBBLE1 or BUBBLE2 or BUBBLE3) in
seqblock

step_pipeline
i f bubble = false then

seqblock
pipeline(ID) := PC
i f branch = undef then

PC := PC + 4
else {

PC := BRANCH
BRANCH := undef

}
endseqblock

else {
BUBBLE1 := false
BUBBLE2 := false
BUBBLE3 := false
BRANCH := undef

}
endseqblock

Listing 11: Instruction fetch (bubbling)

The pipeline needs to be stepped partially, listing 12 shows
the details. Copying of the pipeline register has been re-
moved for clarity. The instruction stays in the ID phase,
the subsequent stages of the pipeline perform a step. In the
EX phase a no operation (here the special value undef) is
inserted.

rule step_pipeline =
{

pipeline(WB) := pipeline(MEM)
pipeline(MEM) := pipeline(EX)

i f (BUBBLE1 or BUBBLE2 or BUBBLE3) then {
pipeline(EX) := undef
EXRESREG := undef

} else {
pipeline(EX) := pipeline(ID)
pipeline(ID) := undef

// copy pipeline registers ID -> EX stage
IDRESREG := undef

}

// copy pipeline registers EX -> MEM stage
// copy pipeline registers MEM -> WB stage

}

Listing 12: Pipeline step (bubbling)

4. MODEL VERIFICATION
Whilst the high-level descriptions of the instructions are very
easy to write, and could be extracted from a processor man-
ual automatically like described in [4], the pipelined models
are error prone to write. There are also some side conditions
for writing correct models which may be violated with hardly
noticeable effect. One could, for example, directly read the
register file after the ID stage (correct behavior is to read
in the ID stage and store it into a pipeline register). Such
an error would only manifest if the register value changes
between the ID stage and the stage which erroneously reads
the register file. Chances are good that such errors slip all
(small) test cases and only occur in large applications where
they are difficult to find. Another source of error is the

splitting of the operations into the various stages. One can
easily swap operands and the like. We rule out such error by
automatically proving the pipelined models to be equivalent
to their high-level counterparts using the first-order theorem
prover Vampire [19].

Instruction models can be understood as state transition sys-
tems, applying a set of well known bit vector operations to
some state. The key observation is: two instructions models
are semantically equivalent iff they induce the same state
transition of the observable state [11]. For the MIPS in-
structions the observable state is exactly the state described
in section 3.1. The pipeline models add additional state (e.g.
pipeline registers) but this state is not observable and can
therefore be ignored when reasoning about semantics.

We have developed a CASM interpreter which features sym-
bolic execution and writes trace files describing the state
transformations as logical facts in TPTP format [21], which
is an input format supported by many theorem provers.

Symbolic Execution is a technique were symbols are pro-
vided to a program instead of normal values. A new symbol
is returned by operations when their arguments are sym-
bolic. This new symbol is associated with the fact that it
resulted from the aforementioned operation. So each symbol
is either a program input or it is known how it was calcu-
lated. Starting from an arbitrary symbolic value, one can
reconstruct the sequence of operations performed and will
eventually have an expression over input symbols. Expres-
sions associated with symbolic values being part of a pro-
grams final state allow that value to be expressed in terms
of input symbols. These expressions link the final and the
initial states and allow reasoning over the model’s induced
state transition [14].

We symbolically execute the high-level and pipelined model
of an instruction, generating two trace files. In each trace
we identify the values changed. Because of the symbolic ex-
ecution trace we can express each changed value in terms
of initial symbols and a sequence of operations. For the
pipelined model to be correct we require, that for each ex-
pressions associated with a changed value of the (observable)
state there is an equal expressions (associated with the same
changed value) in the high-level trace and vice versa. This
equivalences can be proven by a theorem prover.

Listing 13 shows the result of symbolically executing the
high-level model for the addiu instruction. Reading that
trace backwards we see that sym8 is written to the function
GPR (register file) and the register written to is sym4. An
update func(a) := v is described by a predicate f func(t, a, v).
The first argument (t) is a sequential number acting as a
(logical) time stamp. Further tracing identifies sym8 to be
the result of an 32 bit addition of sym6 and sym7. Sym6
is read from register sym3, logical time 0 identifies this to
be the initial state, so tracing back ends here. The (omit-
ted) trace produced by the pipelined model for the addiu
instruction is 176 lines long and cluttered with facts about
changing pipeline registers.

fo f (id2 ,hypothesis ,fPARG(0,0,2,sym3)).
fo f (id3 ,hypothesis ,fPARG(0,0,0,sym4)).
fo f (id4 ,hypothesis ,fPARG(0,0,5,sym5)).

fo f (id5 ,hypothesis ,fGPR(0,sym3 ,sym6)).
fo f (id6 ,hypothesis ,

fSignExtend(sym5 , 16, 32, sym7)).
fo f (id7 ,hypothesis ,

fadd_result (32, sym6 , sym7 , sym8)).
fo f (id8 ,hypothesis ,fGPR(0,sym4 ,sym10)).
fo f (id9 ,hypothesis ,fGPR(1, sym4 ,sym8)).

Listing 13: Symbolic execution of high-level ADDIU

Technically we execute the high-level model of an instruction
and prefix all symbols and state functions. We then execute
the corresponding pipeline version of the instruction using
the CASM code shown in listing 14 and differently prefix
all symbols and state function. The step pipeline and ex-
ecuted pipeline rules call in 14 are exactly the same rules
presented in section 3. For that reason the resulting trace
also covers the pipeline implementation itself, not just the in-
struction model. Basic correctness properties of the pipeline
models are therefore proven as well. Undef is assigned to all
field values after the ID stage of the instruction has been
executed. Should the instruction model access the register
file in a stage other then ID it will result in an undefined
read and the proof will fail.

PC := 0
PMEM (0) := @addiu
IF_stage
execute_pipeline

PARG(0, FV_RD) := undef
// undef all other fields as well

step_pipeline
execute_pipeline
// repeat

Listing 14: Proof generation (pipeline, addiu)

A proof script containing both traces is generated. The ob-
servable initial state of both traces is defined to be equiva-
lent (by axioms). A conjecture is emitted stating that the
observable functions are identical in the final state of the
traces. The theorem prover is then used to perform the
proof (proving all expressions associated with the changed
values of the observable state to be equal). Despite the un-
decidability of first-order theorem proving in general, these
very simple proofs all succeed very quickly.

5. SIMULATOR CONSTRUCTION
The CASM models are compiled to C++ using a straight
forward compilation scheme. The update sets produced by
the statements are implemented using hash maps.

Modeling the instruction set and execution semantics alone
does not produce a usable simulator. One also needs a way
to load programs and an environment to execute them. For
that purpose we enriched the CASM runtime with an ELF
loader and an instruction decoder.

To provide an environment we decided to port the newlib C
library for the simulator. The newlib library is written with
portability in mind and only a handful operations must be
implemented to have a fully featured C library 2. We imple-
2http://wiki.osdev.org/Porting_Newlib

Figure 1: Simulator Architecture

ment these functions using the syscall instruction and link
the resulting stubs library with all programs to be executed
within the simulator.

In the simulator runtime the implementation of the syscall
instruction is provided by native C++ code. Arguments are
passed using the default MIPS ABI and the syscall imple-
mentation reads them accessing the GPR function. All ar-
guments are translated into host system representation (en-
dianness, word size), and the operation is then performed
by the host C library. Operations involving memory buffers
(e.g. read / write) need to be implemented using the MEM-
ORY function. Figure 1 gives an overview of the simulator.

6. EVALUATION
Creation of the models for the instruction set (high-level
and pipelined) was a task of 2 days. Modeling the forward-
ing pipeline took another day, but creating the bubbling
pipeline took only 15 minutes. Most of the work was writ-
ing the pipelined models which also proved to be tedious and
error-prone. Because of the model validation none of the
copy-and-paste errors stayed unnoticed however. We found
typical micro processor idioms to be elegantly expressed in
the CASM language.

We used the small data sets of the MiBench [13] embed-
ded benchmark suite and report the best of 3 runs. We
also executed the 164.gzip benchmark of the SPECInt2000
suite, with test data size, though. Nonetheless we did not
attempt 164.gzip with the bubbling pipeline simulator (es-
timated runtime: 3 days). The tests were performed on a
Intel Core i7 Q820 @ 1.73 GHz with 8 GiB RAM running
on a 64 bit Ubuntu 12.10 and are presented in figure 2.

The performance of the ISS (generated from the high-level)
modes is approx. 950 kHz (instructions per second) on av-
erage with a peak performance of 1046 kHz (qsort). For
CRC32 (775 kHz) and basicmath (380 kHz) the number
of simulated instructions per second is much lower. Both
benchmarks are dominated by I/O operations, reading the

file (CRC32) and printing results (basicmath). The I/O im-
plementation of the simulator performs poorly, so the results
are to be expected. For the simulator generated with the for-
warding models approx. 48 kHz simulation speed is achieved
on average. The main reason for the huge performance gap
compared to ISS is a suboptimal handling of large update
sets in the generated code.

Surprisingly the bubbling simulator performs better (ap-
prox. 50 kHz) at the first glance. The number of simulated
cycles is substantial larger than for the other simulators be-
cause of the automatically inserted bubbles. As bubbles are
no operations they perform much better than real instruc-
tions. Reducing the cycle counter by the number of gener-
ated bubbles yields the instruction throughput which better
indicates the simulation runtime. In figure 2 this is called
Bubbling* and simulator performance is approx. 29 kHz.

The measured jitter was very low, which is expected as no
dynamic optimizations are applied. Time measurement is
implemented in the simulator using the getrusage(2) system
call. It excludes the time it takes to load the simulator, the
ELF binary and time for initializing data structures.

7. RELATED WORK
A good introduction into instruction set simulation gives the
book chapter by Brandner et.al [7]. They describe the dif-
ferent implementation techniques, present existing processor
description languages and discuss a large set of the related
work.

Teich, Kutter and Weper [23] specified the ARM instruction
set using ASM. They generate a cycle-accurate simulator
based on the RTL description of the processor, but do not
report on the achieved performance.

Nohl et.al [16] describe generating instruction set simulators
using the LISA processor description language. LISA is a do-
main specific language for describing micro processors. They
used JIT compiler technologies to improve performance.

Rajesh and Moona [18] describe a very similar approach to
what we have presented in this paper. They use the Sim-
nML language to describe the instruction set and generate
C++ code which is linked to a runtime for generating a sys-
tem simulator. Performance of their simulator is reported to
be approx. 3000 instructions per second, although published
in 2000. Assuming doubled CPU speed every 18 month a
rough estimate would be around 768 kHz performance on
modern hardware, approximately the same speed we report
here. Casse el.al [9] report on on various optimization in a
Sim-nML derived simulator. They achieve simulator perfor-
mance above 10 MHz.

The Unisim project relies on the SystemC language and its
tools [22] to provide an execution environment for the sim-
ulation of processors [1]. The project offers several compo-
nents, such as memories, caches, buses, and even complete
processors, with well defined interfaces that can quickly be
integrated with other components.

Like the Unisim framework, the ArchC processor description
language is based on SystemC [2]. Following the SystemC

10 kHz

50 kHz

100 kHz

1MHz

basicm
ath

qsort

susan.sm
oothing

susan.edges

susan.corners

adpcm
.encoding

adpcm
.decoding

C
RC

32

gsm
.encoding

gsm
.decoding

164.gzipin
s
tr

u
c
ti

o
n
s
 p

e
r

s
e
c
o
n
d
 (

lo
g
)

ISS
Forwarding

Bubbling
Bubbling*

Figure 2: Simulator Performance (instructions per second)

TLM standard it is thus possible to integrate the derived
simulators with external SystemC modules.

Brandner et al. [6] developed the xADL processor descrip-
tion language. Efficient instruction set simulators are using
the just-in-time compiler of the LLVM compiler infrastruc-
ture. In addition to simple basic blocks, hot regions of code
are recognized and recompiled using more aggressive opti-
mizations. These regions may contain arbitrary control flow,
including loops.

LISA, nML and xADL are processor description languages
with a high abstraction level. This allows better optimiza-
tion of the resulting instruction set simulators and higher
simulation speeds. CASM like SystemC and ArchC is a
more general purpose modeling language. This makes opti-
mizations more difficult. If coding conventions are respected
common specification patterns can be recognized and opti-
mized.

8. CONCLUSION AND FUTURE WORK
We have shown how the CASM language can be used to
elegantly model a pipelined micro processor. By using the
feature of symbolic execution we were able to prove that the
error-prone pipelined version of the instruction set models
are semantically equivalent to the much simpler high-level
models. No bugs manifested in any of the executed bench-
mark. We found this to be a very useful property of using
the CASM language for modeling instruction sets. It would
also be very interesting to extend the proof system and per-
form a complete verification of the pipeline implementation.

Simulator performance is satisfying considering the fact that

CASM is not a language dedicated to simulator description.
There is however ongoing research on how to further improve
the performance of the generated simulators, and a few cul-
prits have already been identified. We are also interested in
completing the newlib port to be able to execute arbitrary
C programs.

9. REFERENCES
[1] D. August, J. Chang, S. Girbal, D. Gracia-Perez,

G. Mouchard, D. A. Penry, O. Temam, and
N. Vachharajani. UNISIM: An open simulation
environment and library for complex architecture
design and collaborative development. IEEE
Computer Architecture Letters, 6(2):45–48, 2007.

[2] R. Azevedo, S. Rigo, M. Bartholomeu, G. Araujo,
C. Araujo, and E. Barros. The ArchC architecture
description language and tools. Int. J. Parallel
Program., 33(5):453–484, 2005.

[3] J. Bergin and S. Greenfield. Teaching parameter
passing by example using thunks in C and C++.
SIGCSE Bull., 25(1):10–14, Mar. 1993.

[4] F. Blanqui, C. Helmstetter, V. Joloboff, J.-F. Monin,
and X. Shi. Designing a CPU model: from a
pseudo-formal document to fast code. CoRR,
abs/1109.4351, 2011.

[5] E. Börger and J. Schmid. Composition and
submachine concepts for sequential ASMs. In
Computer Science Logic (Proceedings of CSL 2000),
volume 1862 of LNCS, pages 41–60. Springer-Verlag,
2000.

[6] F. Brandner, A. Fellnhofer, A. Krall, and D. Riegler.
Fast and accurate simulation using the LLVM
compiler framework. In RAPIDO ’09: 1st Workshop

on Rapid Simulation and Performance Evaluation:
Methods and Tools, 2009.

[7] F. Brandner, N. Horspool, and A. Krall. DSP
instruction set simulation. In S. S. Bhattacharyya,
E. Deprettere, R. Leupers, and J. Takala, editors,
Handbook of Signal Processing Systems, pages
679–705. Springer, Aug. 2010.

[8] E. Börger. Abstract state machines: A method for
high-level system design and analysis, 2003.

[9] H. Cassé, J. Barre, R. Vaillant-David, and P. Sainrat.
Fast Instruction-Accurate Simulation with SimNML
(regular paper). In Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools
(RAPIDO), Heraklion, Crète, Grèce, 22/01/11, pages
8–12, http://univ-lille1.fr, janvier 2011. Université de
Lille.

[10] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM:
An extensible ASM execution engine. In Proc. of the
12th International Workshop on Abstract State
Machines, pages 153–165, 2005.

[11] G. Goos and W. Zimmermann. Verifying compilers
and ASMs. In Proceedings of the International
Workshop on Abstract State Machines, Theory and
Applications, ASM ’00, pages 177–202, London, UK,
2000. Springer-Verlag.

[12] Y. Gurevich. Evolving algebras 1993: Lipari guide,
pages 9–36. Oxford University Press, Inc., New York,
NY, USA, 1995.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, WWC ’01, pages 3–14,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394, July 1976.

[15] R. Lezuo and A. Krall. A unified processor model for
compiler verification and simulation using asm. In
ABZ, pages 327–330, 2012.

[16] A. Nohl, G. Braun, O. Schliebusch, R. Leupers,
H. Meyr, and A. Hoffmann. A universal technique for
fast and flexible instruction-set architecture
simulation, 2002.

[17] D. A. Patterson and J. L. Hennessy. Computer
Organization and Design - The Hardware / Software
Interface (Revised 4th Edition). The Morgan
Kaufmann Series in Computer Architecture and
Design. Academic Press, 2012.

[18] V. Rajesh and R. Moona. Processor modeling for
hardware software codesign. In in Int. Conf. on VLSI
Design, pages 132–137, 2000.

[19] A. Riazanov and A. Voronkov. The design and
implementation of VAMPIRE. AI Commun.,
15:91–110, Aug. 2002.

[20] R. G. Sargent. Verification and validation of
simulation models. In Winter Simulation Conference,
WSC ’09, pages 162–176. Winter Simulation
Conference, 2009.

[21] G. Sutcliffe, S. Schulz, K. Claessen, and
A. Van Gelder. Using the TPTP language for writing
derivations and finite interpretations. In Proceedings of

the Third international joint conference on Automated
Reasoning, IJCAR’06, pages 67–81, Berlin,
Heidelberg, 2006. Springer-Verlag.

[22] Open SystemC Initiative.
http://www.systemc.org/home.

[23] J. Teich, P. W. Kutter, and R. Weper. Description
and simulation of microprocessor instruction sets
using ASMs. In Proceedings of the International
Workshop on Abstract State Machines, Theory and
Applications, ASM ’00, pages 266–286, London, UK,
2000. Springer-Verlag.

[24] J. J. Yi and D. J. Lilja. Simulation of computer
architectures: Simulators, benchmarks, methodologies,
and recommendations. IEEE Trans. Computers,
55(3):268–280, 2006.

