
A Model-Based Transformation Approach to
Reuse and Retarget CASM Specifications

Philipp Paulweber and Uwe Zdun

University of Vienna
Faculty of Computer Science

Währingerstraße 29, 1090 Vienna, Austria
{philipp.paulweber,uwe.zdun}@univie.ac.at

Abstract. The Abstract State Machine (ASM) theory is a way to spec-
ify algorithms, applications and systems in a formal model. Recent ASM
languages and tools address either the translation of ASM specifications
to a specific target programming language or aim at the execution in a
specific environment. In this work-in-progress paper we outline a model-
based transformation approach supporting (1) the specification of appli-
cations or systems using the Corinthian Abstract State Machine (CASM)
modeling language and (2) retargeting those applications to different
programming language and hardware target domains. An intermediate
model is introduced, which not only captures software-based implemen-
tations, but also the generation of hardware-related code in the same
model. This approach offers a new formal modeling perspective onto
modular, reusable and retargetable software and hardware designs for
the development of embedded systems. We provide a short overview of
our CASM compiler design as well as the retargetable model-based ap-
proach to generate code for different target domains.

1 Introduction

Since 1995 where Gurevich has described the Abstract State Machine (ASM)
theory [1], many approaches have been proposed to interpret, execute, translate,
verify and validate ASM specifications (summarized by Börger [2]). Generally
speaking all available (public) tools either aim to integrate an ASM language into
a specific (software) platform system/framework or focus on a domain specific
purpose. We want to enlarge the scope of ASM language tools and provide a
general purpose modeling system for the Corinthian Abstract State Machine
(CASM) modeling language (introduced by Lezuo et al. [3]). Such a system will
enable us to specify arbitrary applications/systems in this language and translate
them into one or multiple programming language and hardware target domains.
To the best of our knowledge, such a generic translation does not yet exist.

Furthermore, not only is the focus of our investigation not limited to trans-
lations to several software environments, it also includes the idea to translate
CASM specifications to different Hardware Description Language (HDL) con-
texts. This will enable us to even describe electronic circuit designs with CASM



specifications and will result in a broad range of applications from specifying
small embedded applications up to Reduced Instruction Set Computing (RISC)
microprocessors or even complete System-on-Chip (SoC) designs in a formal way.

1.1 Modeling Language and Compiler

The CASM modeling language was designed and used by Lezuo et al. [3] to
describe the semantics of machine languages. Moreover, they performed compiler
correctness proofs through the usage of the ASM machine models and compiled
specifications written in this language into efficient C/C++ applications [4].
Unlike other ASM specification languages such as AsmL [5] or CoreASM [6],
CASM currently consists of a small grammar and a static, strong type system,
and it only supports a subset of rules from the CoreASM modeling language.
The static, strong type system allows to optimize such specifications. Initially,
the syntax of CASM followed CoreASM, but over time it diverged significantly
(differences to other ASM modeling languages are described by Lezuo et al. [3]).

Due to the (currently) small grammar, the optimization potential and sim-
plicity, the CASM modeling language is a good fit for our effort to retarget ASM
specification. Before we go into details, let us review the design of the com-
piler infrastructure proposed by Lezuo et al. [4]. Figure 1 depicts the translation
process.

The parsed CASM specifications are transformed into an Abstract Syntax
Tree (AST), and after that type checks and type annotations are performed.
Several static optimizations are performed to eliminate run-time overheads. All
transformations which need run-time specific calculations and knowledge are
redundantly implemented in the AST-based optimizations. The compiler directly
emits C/C++ code in the next step, which then gets compiled and linked against
the C/C++ run-time library. Important to mention here is that the generated
code and the run-time are not synchronized in their implementation state.

1.2 Motivation and Goal

The design in Figure 1 is not a retargetable infrastructure. That is, in this design,
the existing code emitter and run-time implementation need to be checked for
correctness, and it must be tested that the execution and calculation of the
generated C program equals the specified CASM input specification. If we would
retarget this design to different software or hardware environments, we would

Source
(CASM)

Typed-
AST

Target
(C/C++)

Binary
Run-time
(C/C++)

parse

optimize

emit compilecompile

Fig. 1. CASM compiler with C/C++ back-end



have to check for the code emitter and run-time implementation again for each
new environment that the calculation behavior of the generated target equals
the specified CASM input specification.

The emitting stage depicted in Figure 1 is the main focus of our approach.
Our solution to this retargetable CASM specification problem is to abstract the
run-time and the emitted code in a specific calculation model. This will allow us
to check the transformation from the CASM model to this specific computational
model once. And for every new target environment (software or hardware) we
add to the compiler, only the transformation has to be checked from the specific
calculation model to the new target environment. Therefore, we can develop
several different code emitter implementations hand-in-hand with one run-time
implementation and one CASM transformation implementation.

This approach enables us to create and generate reusable and retargetable
software or hardware artifacts. Those artifacts are self-contained because in our
approach we even include the full CASM run-time in the generated artifacts.
Hence, the generated artifacts of CASM input specifications can be deployed
without further libraries or dependencies. The latter is very important when
it comes to hardware-related generated code, because it will not only ease the
integration in other hardware designs, but will also allow HDL compilers to fully
optimize the generated HDL code on module level.

2 Retargetable Approach and Models

The design of our CASM implementation follows a strict model-based transfor-
mation approach to overcome the retargetable CASM specification problem. Fig-
ure 2 depicts our model-based transformation approach where we introduce two
models – the Intermediate Representation (IR) and the Emitting Language (EL)
model.

Source
(CASM)

Typed-
AST

IR

Model
(IR)

EL

Model
(EL)

Target
(EL)

Run-time
(EL)

Target
(X)

compile,
interpret,

synthesize,
. . .

parse

transf.

optimize optimize

transf.

combine

combine emit

conforms

conforms

conforms

Fig. 2. CASM compiler with model-based transformation



2.1 Intermediate Representation Model

The IR is a full CASM semantics aware model which will be used to analyze
and optimize the input specification. An instance of this model is created dur-
ing the AST to IR transformation (first transformation step in Figure 2). The
IR model consists of two important characteristics – parallel/sequential Control
Flow Graph (CFG) (introduced by Lezuo et al. [4]) and explicitly modeled op-
erations which are not covered in the AST representation from Lezuo et al. [4]
e.g. the location of a ASM state function. The proposed ASM specific lookup
and update elimination optimizations by Lezuo et al. [4] are planned to be im-
plemented at this level. Software back-ends will profit from those optimizations
to be able to execute the specifications much faster (as shown in [4]). Further-
more, we strongly believe the hardware back-ends will benefit from the proposed
optimizations too. Because the generated HDL code will result in a less com-
plex digital design by reducing the number of performed calculations just like it
applies to the generated software code.

2.2 Emitting Language Model

The EL model is the main contribution in this paper. An instance of this model
is created during the IR to EL transformation of the IR instance (depicted in
Figure 2). It allows us to express the CASM run-time and the CASM input
specification in a CASM semantics unaware fashion. Thereby we are forced to
find generic abstract language constructs for the EL model which allow us to
express calculations, procedures and sequential and parallel execution behavior.
Figure 3 depicts the class diagram of the EL model.

The EL model is designed to make the mapping to different software/hard-
ware targets easier, but this generic abstraction does not come without limita-
tions. For example the only data type allowed in the EL model is a bit-precise
integer value (Bit-type) to enable a clean translation to HDL data types. To
represent complex or compound data a structure concept is available in the EL
model as well to create records of several bit-precise integer values.

The overall model construct is a Module which can contain besides Constants,
Variables, CallableUnits also explicitly defined Memory blocks. The Memory

EL Model

Module

Constant

Structure Bit-typeVariable

Memory CallableUnit

Intrinsic Function

Scope Statement Instruction

*
*

* *

*

*

*
*

*

*

* *

Fig. 3. Emitting language model class diagram



blocks are used to properly allocate the appropriate amount of wiring and mem-
ory storage in the generated HDL designs. The difference between a Memory
and Variable storage is that Variables are translated to HDL designs as plain
registers and only permit a single write access. Memory blocks permit multiple
write access. We assume in the EL model that each write access is mutually
exclusive. The latter is important, because the model allows the construction of
mixed parallel and sequential Statement blocks.

CallableUnits are divided into two procedural constructs – Functions and In-
trinsics. Software back-end languages like C, Python etc. use this differentiation
to emit efficient target language code, which can be used by the target com-
piler/interpreter to optimize the execution of the program. Hardware back-end
languages can derive a differentiation between behavioral descriptions and com-
putational logic blocks. At this point, another important EL model characteristic
is that a CallableUnit does not have a “return” value. All incoming and outgoing
data of a CallableUnit has to be explicitly defined through “in” and “out” pa-
rameters. Hence, software back-ends will use this to generate “call-by-reference”
constructs and hardware back-ends generate direct component wiring.

All CallableUnits can contain mixed parallel and sequential Scopes to define
a concurrent and sequential calculation hierarchy. Every Scope in the EL model
can contain several Statements. A Statement can either be a “trivial”, “branch”
or “loop” behavioral container. Every Statement consists of a list of Instructions,
which form the leaf nodes in the EL model and perform the actual operations.

Furthermore, due to the flexibility of the EL model and the possibility of
unbounded in time of rule evaluations in the sense of CASM, we decided to
translate EL instances in the HDL back-ends to asynchronous digital designs.
Hence, every Function, Intrinsic, Statement etc. from the EL model follows a
request-acknowledge handshake protocol. Currently we only focus, besides the
software C back-end, for the hardware back-ends on the generation of Very High
Speed Integrated Circuit Hardware Description Language (VHDL) code with an
assumed annotated timing information. The generated designs are validated in
a HDL simulator environment. But in the future the generated code shall be
synthesizeable to Field Programmable Gate Array (FPGA) boards as well.

2.3 Compiler Design

From the software design point of view of the compiler, both presented models
(IR and EL) follow a Single Static Assignment (SSA) based internal represen-
tation. They use a similar class design and analyze/transformation pass design
proposed by the Low Level Virtual Machine (LLVM) compiler infrastructure by
Lattner and Adve [7]. The latter was used in early experiments to translate the
CASM IR model to the LLVM IR model, but due to the retargetable focus for
assembly code it turned out that the LLVM IR model was to low-level to realize
our retargetable approach. Therefore, we started the design of the EL model.



3 Conclusion, Preliminary Results and Outlook

We have outlined our CASM based retargetable compiler infrastructure and the
model-based transformation approach which will enable the reuse, integration
and execution of a single CASM specification in different software and hardware
environments through the usage of the EL model.

The current development status of the compiler and the models are in an
early state. Major compiler infrastructure and transformation passes are imple-
mented to parse, dump and transform CASM input specifications. We were able
to retarget a small CASM filter application to a valid C program and VHDL
digital design (not synthesizeable yet). The example application consists of three
functions, one rule and two parallel update terms.

The overall goal we want to achieve in our future work is to create at least for
four language domains a translation back-end implementation. CASM specifica-
tions shall be translated to C11 (native), Python (script), JavaScript (web) and
VHDL (hardware). A possible field of application would then be the construc-
tion of a new RISC microprocessor design in CASM. The proposed retargetable
approach of our modeling system generates then directly an Instruction Set Sim-
ulator (ISS) for software debugging, an ISS for integration in a website (e.g. for
presentation and testing purposes), and a valid synthesizeable hardware imple-
mentation.

References

[1] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide - Specification and Validation
Methods,” pp. 9–36, New York, NY, USA: Oxford University Press, Inc., 1995.

[2] E. Börger, “The Abstract State Machines Method for High-Level System Design
and Analysis,” in Formal Methods: State of the Art and New Directions, pp. 79–116,
Springer, 2010.

[3] R. Lezuo, G. Barany, and A. Krall, “CASM: Implementing an Abstract State
Machine based Programming Language.,” in Software Engineering (Workshops),
pp. 75–90, 2013.

[4] R. Lezuo, P. Paulweber, and A. Krall, “CASM - Optimized Compilation of Abstract
State Machines,” in SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES), pp. 13–22, ACM, 2014.

[5] Y. Gurevich, B. Rossman, and W. Schulte, “Semantic Essence of AsmL,” in Formal
Methods for Components and Objects, pp. 240–259, Springer, 2004.

[6] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Extensible ASM Execu-
tion Engine,” Fundamenta Informaticae, vol. 77, no. 1-2, pp. 71–104, 2007.

[7] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Code Generation and Optimization, pp. 75–86,
IEEE, 2004.


	A Model-Based Transformation Approach to Reuse and Retarget CASM Specifications

