
Improving casmi - The AST
Interpreter for CASM

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Emmanuel Pescosta
Registration Number 1326934

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Assistance: Univ.Ass. Dipl.-Ing. Philipp Paulweber, BSc. (UNIVIE)

Vienna, 11th March, 2017
Emmanuel Pescosta Andreas Krall

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

CASM
Corinthian Abstract State Machine

Language, Interpreter, and Compiler

Puck, The Sandman by Neil Gaiman

The origin of the name Corinthian is unclear,

whether it is taken from ''the letters,

the pillars, the leather, the place,

or the mode of behavior''.

https://casm-lang.org

github.com/casm-lang

twitter.com/casm_lang

Abstract

This bachelor’s thesis builds upon casmi, which was introduced by Florian Hahn in
[Hah14], and improves its runtime performance and memory consumption. casmi is an
abstract syntax tree (AST) interpreter for the Corinthian Abstract State Machine (CASM)
language, an abstract state machine (ASM) based programming language for accurate
high-level modeling and analysis of soft- and/or hardware systems. The first part of this
thesis focuses on the implementation of a new update set while the second part evaluates
different techniques to optimize the hashing of ASM function arguments. Both parts are
crucial to achieve good performance when executing large CASM specifications, as they
occur in translation validation and processor simulation. Finally the improvements of
casmi will be compared to the legacy version of casmi [LPK14] and to the CoreASM
interpreter.

v

Contents

Abstract v

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Methodological Approach . 2
1.4 CASM Language . 2

2 Related Work 5
2.1 ASM Interpreters . 5
2.2 Update Set Handling . 6
2.3 Hashing Methods . 6

3 Update Set 7
3.1 Definitions . 7
3.2 Implementation . 8
3.3 Update Set Size Prediction . 10
3.4 Comparison . 13

4 Location Hashing 15
4.1 Terminology . 15
4.2 Hashing Schemes . 15
4.3 Arguments Hashing Approaches . 16
4.4 Implementation . 17
4.5 Comparison . 18

5 Evaluation 19
5.1 Environment . 19
5.2 CASM Specifications . 19
5.3 Execution Time . 21
5.4 Memory Consumption . 22
5.5 Arguments Hashing . 24

vii

5.6 Hash Maps . 25

6 Conclusion 29
6.1 Future Work . 29

Bibliography 31

CHAPTER 1
Introduction

1.1 Motivation

Translation validation is one approach to show that a compiler produces semantically
equivalent output in respect to its input, which is a relatively important part of the
certification procedure of safety-critical applications. The CASM language, which was
introduced by Roland Lezuo in [LBK13], allows such translation validation to formally
prove that a single compiler output is semantically equivalent to its input. This is done
by symbolic execution of the compiler in- and output, which are described by CASM
models and by proving the equivalence of both execution traces via a first-order logic
theorem prover (see [Lez14]). For industrial-scale applications the resulting CASM models
can become very large and thus the performance and memory efficiency of the CASM
interpreter casmi is crucial for executing such models.

While casmi already delivers superior performance when compared to the first generation
CASM interpreter (see [Hah14]), it suffers from some performance bottlenecks and memory
leaks. Another big drawback is that the update set implementation, which is currently
used by casmi (see [Pau14]), was developed in cooperation with an industry partner
and therefore the CASM toolset could not be distributed freely and released as open
source software.

1.2 Problem Statement

In the scope of this thesis a new update set implementation will be realized and compared
to the previous implementation in terms of performance and memory efficiency. The new
update set implementation should be efficient, easy to understand and test, and isolated
from the rest of the AST interpreter with the goal that it can easily be reused in the
intermediate representation (IR) interpreter, which will be realized in the near future.

1

1. Introduction

Along with the new update set implementation a new memory allocator will be imple-
mented, which is optimized for the allocation and deallocation patterns of the interpreter
(see [Pau14]). The memory allocator should be good at handling stack like allocations
while keeping the overall memory consumption as low as possible.

Furthermore the hashing of functions will be optimized and it should be evaluated which
hashing technique is best for the requirements of casmi. Hashing plays a major role
in the runtime performance of casmi given that it’s involved in every single function
update and lookup operation.

The result of this thesis should be a fast and memory efficient CASM AST interpreter,
which doesn’t require any proprietary module to run, so that the complete toolset can be
released as open source software.

1.3 Methodological Approach

At the beginning the numeric and symbolic execution code from Florian Hahn [Hah14]
must be adapted to the new front-end, which contains quite a few changes in regard
to the AST visitation. Alongside with the adaption of the legacy code the update set
handling must be implemented from scratch so that the interpreter can run in the first
place.

As soon as the interpreter runs the existing code needs to be analyzed to detect bugs,
crashes and weak spots of memory consumption and performance. After that the faults
have to be analyzed and fixed to achieve a solid and test-covered base for further
improvements and additions.

The next step is to implement multiple different hashing techniques and to compare them
in regard to performance and memory consumption.

1.4 CASM Language

CASM is a statically-typed programming language build upon the concept of abstract
state machines (ASM) which were introduced by Yuri Gurevich in [Gur95]. ASMs provide
a formal way to model problems on arbitrary levels of abstraction, starting with an
abstract ground model and performing stepwise refinement to get a more detailed model.
ASMs can be used for accurate high-level modeling and analysis, both verification and
validation by testing and simulating, of soft- and/or hardware systems (see [BS03]).

ASMs have a clear notion of state and state transitions. In CASM the state transitions
are reflected by rules. Each agent has a program rule which will be called on each step, on
start-up the program rule will be initialized with the rule defined by the init statement.
Please note that CASM is currently limited to a single execution agent, multi-agent
ASMs will be possible in a future version of casmi. On each step the rules produce a
set of updates which are then applied to the global state causing a transformation of the

2

1.4. CASM Language

global state (see Definition 3.1.7). If a rule produces an inconsistent update set, i.e. if it
contains multiple updates for the same location but with different update values (see
Definition 3.1.6), no updates will be applied and instead the executing will be aborted.
The execution of the CASM program will also be stopped if the update set of a step is
empty, i.e. when the ASM reaches a final state, or when the program rule of the agent
has no defined value, which is called undef in CASM.

A state maps locations to values. All functions are interpreted in states as total functions
in the mathematical sense. Undefined function locations return the special value undef
or the specified default value if the functions is a defined function. Functions have a
specified arity and can be initialized via the initially keyword.

1 CASM
2
3 init swap
4
5 function x: Integer initially { 21 }
6 function y: Integer initially { 42 }
7
8 rule swap =
9 par

10 x := y
11 y := x
12 endpar

Listing 1.1: Swapping x and y in Parallel Rule

Listing 1.1 shows a simple CASM specification of the swap algorithm using parallel
execution semantics. The initial global state is {(x(), 21), (y(), 42)} where x and y are
0-ary dynamic functions. When executing this model the swap rule will produce an
update set containing two updates ((x, ()), 42) and ((y, ()), 21). An update basically
consists of a value and a location, which is an n-ary function with arguments denoted
as (f, (a1, ..., an)). At the end of the first step the current global state together with the
update set will yield a new global state {(x(), 42), (y(), 21)} where the values of x and y
are swapped. This example clearly shows a big advantage of ASMs, namely the parallel
execution of rules with the respect to the same global state.

1 CASM
2
3 init swap
4
5 function x: Integer initially { 21 }
6 function y: Integer initially { 42 }
7
8 rule swap =
9 seq

10 x := y
11 y := x
12 endseq

Listing 1.2: Swapping x and y in Sequential Rule

3

1. Introduction

Listing 1.2 shows almost the same algorithm using sequential instead of parallel execution
semantics. Statements of a sequential execution block are executed in sequential order
in respect to the same temporary state. This behavior is comparable to traditional
programming languages like C. After each statement the updates are merged into the
temporary state of the sequential execution block, thus the updates produced by a single
statement are visible to all following statements. This, in turn, means that statements
can overwrite the changes made by previous statements, in parallel execution blocks this
would lead to an inconsistent update set. The initial global state of this example is the
same as in 1.1. The first statement of the swap rule produces an update ((x, ()), 42), this
yields a temporary state {(x(), 42), (y(), 42)}. The second statement, which assigns the
value of x from the temporary state to y, produces an update ((y, ()), 42) and applying it
to the temporary state yields {(x(), 42), (y(), 42)} and thus the final global state after
the first step is {(x(), 42), (y(), 42)} where the swapping wasn’t performed correctly. A
temporary variable holding the original value of x before it will be overwritten is required
to solve the problem of this implementation.

Both examples show that the choice of the execution semantics, either sequential or
parallel, has a significant impact on the semantics of the whole program. Parallel and
sequential execution can also be interleaved, see as an example the Listing 3.2.

A detailed description of the CASM language can be found in [Lez14] and [Pau14].

4

CHAPTER 2
Related Work

2.1 ASM Interpreters

The first C++-based version of casmi was introduced by Inführ in [Inf13]. The aim of
his project was to replace the old Python-based prototype interpreter casmintr, written
by Lezuo as part of his PhD thesis [Lez14], by a fast C++ implementation which can
share most of the frontend related code (lexer, parser and type checker) with the CASM
compiler. As a result of the re-write the interpreter was at least 190 times faster than
the prototype implementation (see Chapter 6 in [Inf13]).

The second version of casmi, which was a major re-write of the first one, was introduced
by Hahn in [Hah14]. His interpreter uses the update set implementation of the CASM
compiler (see [Pau14]) instead of the default C++ hash map implementation used by
Inführ’s interpreter to achieve a better performance. Also some memory management
and type inference flaws of the first version of casmi have been fixed during the re-write.
Although the whole re-implementation was done as a clean room implementation the
casmi code still couldn’t be released as open source software because of the usage of the
proprietary update set implementation. As a result of the second re-write the performance
could be increased once more by about 2-4 times compared to the first version of casmi.

Farahbod introduced CoreASM in [FGG07] as an research effort to make ASM specifica-
tions executable. The focus of this project is to be as close as possible to the mathematical
definition of pure ASMs [FGG07]. While CASM, which was inspired by CoreASM, is a
statically-typed language, the CoreASM language is a completely untyped language to
be closer to a real abstract model. The interpreter itself is completely written in Java.
The design is based around an highly extensible core engine so that almost all aspects
of the interpreter can be extended through plug-ins. In addition to the interpreter the
CoreASM project provides many additional tools such as a graphical user interface to
visualize and debug the simulation runs of ASM specifications.

5

2. Related Work

2.2 Update Set Handling
In [Sch01] Schmid introduced a compiler for the FALKO project to translate ASM
specifications into efficient C++ code. The main aim of this compiler was to generate
fast code for efficient execution of industrial-strength ASM specifications. To reach
this target an efficient update set handling has been implemented. The basic idea of
his implementation is to use double buffering which is well known from from graphics
rendering to avoid tearing and rendering artifacts. Each function location basically uses
a state counter and two variables to hold the saved value and the new value. During
a rule execution the function state counters together with the global state counter are
used to keep track if a function location has already been updated during a transition,
which would require a consistency check for each additional function write operation.
Firing of updates is just a matter of copying the new value into saved value and adjusting
the counters of each function location, which has been changed during a transition. An
optimized version of this method (more like page flipping) is described in [Sch01] which
avoids the overhead of the value copying by using a boolean value to indicate which of
both variables is currently used for reading and for writing. This update set handling
approach completely avoids the expensive update set hashing which results in a huge
performance gain. The major disadvantage of this approach is that it only supports
parallel execution semantics which makes it impractical for casmi.

Another approach for efficient update set handling was proposed by Lezuo in [Lez14] and
implemented by Paulweber in [Pau14] as part of their CASM compiler work [LPK14].
This approach is based on the assumption that the update set is much smaller than the
global state [Lez14], so it is more efficient to track only the changes instead of duplicating
the whole state. It basically uses a single hash map to keep track of all generated updates
during a transition. Due to compilation reasons a pseudo state counter was introduced.
With the help of this pseudo state counter nested update sets can be realized and thus
it supports the interleaving of parallel and sequential execution blocks. Updates can
be fired by iterating through all updates of the update set and apply each of them to
the global state. Paulweber’s implementation was also used by the previous version of
casmi and will be compared with the new implementation in Section 3.4.

2.3 Hashing Methods
In [RAD15] Richter et al. did an analysis of multiple different hashing methods for 64-bit
integer keys. They compared chained hashing, linear probing, quadratic probing, robin
hood hashing and cuckoo hashing under different conditions, like different maximum load
factors, using different hashing functions. As a result of their work they suggested a
decision graph which should help to select a good hash map for the given requirements.

6

CHAPTER 3
Update Set

3.1 Definitions
The following definitions are taken from Chapter 2.4 "Detailed Definition (Math. Foun-
dation)" of the book [BS03]:

Defintion 3.1.1. A signature Σ is a finite collection of n-ary functions where n ∈ N0.

Defintion 3.1.2. A state U for the signature Σ is a non-empty set X, the superuni-
verse of U, together with an interpretation fU : Xn → X of each function name f ∈ Σ.
The default value of the superuniverse is undef.

Defintion 3.1.3. A location of U is a pair (f, (t1, ..., tn)), where f denotes the name
of an n-ary function and (t1, ..., tn) ∈ Xn are function arguments.

Defintion 3.1.4. An update is a pair u = (l, v), where l denotes the location and v ∈ X
the value of the update.

Defintion 3.1.5. An update set is a collection of updates U = {u1, u2, ..., un}.

Defintion 3.1.6. An update set U is called consistent if it has no clashing updates,
i.e., if for any location l and all elements u, w holds that if (l, u) ∈ U and (l, w) ∈ U then
u = w.

Defintion 3.1.7. Firing of a consistent update set U into a state U yields a new state
U + U with the same superuniverse as U so that for every location l ∈ U holds:

(U + U)(l) =
{

u if (l, u) ∈ U
U(l) if @u : (l, u) ∈ U

Defintion 3.1.8. Parallel execution semantics of P par Q is given by executing both
rules in respect to the same state U.

7

3. Update Set

Defintion 3.1.9. Sequential execution semantics of P seq Q is given by first executing
P in the state U which yields the update set U , then executing Q in the resulting state
U + U .

3.2 Implementation

3.2.1 Update

An update is represented through a simple C structure which stores the updated value, a
pointer to the function arguments, the id of the function and the source code location
of the update statement. Anything expect of the updated value is only used to provide
useful debug information to the user when clashing updates are detected while adding or
merging updates. To achieve optimal performance all updates are allocated by a block
allocator [Pau14] which is described in Section 3.2.4.

3.2.2 Update Set

An update set keeps track of all updates of a specific execution block. Depending on
the actual execution semantics of the block a sequential or a parallel update set has to
be used. The update set itself uses a single-linked hash-map with the location as key to
store the updates in an efficient manner.

The basic operations provided by an update set are adding and searching for updates
for a specific location. The behavior of adding and searching for updates depends on
the actual type of the update set. Adding an update into an update set with sequential
execution semantics will either insert the update when no update for the given location
exists or overwrite an existing update with the same location. Whereas adding an update
into an update set with parallel execution semantics will either insert the update when no
update for the given location exists or throw a conflict exception when an update for the
same location but with a different update value exists. Given that clashing updates are
detected and handled at the time of insertion an update set is always consistent. Adding
of an update to an update set takes constant time regardless of the type.

Searching for updates requires a lookup in multiple update sets, starting with the update
set of the current execution block and walking up the fork tree until the root node is
reached. Each sequential update set on this path needs to be checked until an update set
has been found which contains an update for the requested location. Update sets with
parallel execution semantics are ignored (see Definition 3.1.8). If none of these update
sets contains an update for the requested location a nullptr will be returned, indicating
the absence of an update. The complexity of searching for an update is linear in the
number of nested execution blocks, i.e., linear in the number of enclosing update sets.

To support the interleaving of sequential and parallel execution semantics of CASM,
update sets can be forked and merged. Forking an existing update set produces a new
update set with the demanded execution semantics as well as a link to the update set

8

3.2. Implementation

from which the fork originates from, also called the parent update set. The forking of
an update set takes constant time. All the update sets together form a fork tree where
every tree node can have an arbitrary number of forks. The root node of an fork tree
corresponds to the update set of the outermost execution block and thus has no parent
update set. At the end of each block the updates need to be applied to the update set of
the surrounding block, this is done by merging an update set into its parent update set.
The merging itself is rather simple, it just iterates over all updates of an update set and
adds each update into its parent update set, thus the complexity of merging is linear in
the size of the update set to merge. Using the add operation of the parent update set for
merging guarantees that the updates are always applied under the execution semantics
of the parent update set.

The firing of updates hasn’t been implemented into the update set itself because this
operation heavily depends on the interpreter specific implementation of the global state.
But the required work is just a matter of iterating through all updates of the update set,
applying each of them to the global state and clearing the update set afterwards.

3.2.3 Update Set Manager

The update set manager keeps track of all update sets by maintaining a stack of them
where the top of stack denotes the current update set. The manager provides almost the
same operations as the update set. Each operation basically forwards the request to the
current update set or if the stack is empty it takes appropriate action. The fork operation
adds a fork of the current update set onto the top of the stack. The merge operation
merges the current update set into its parent and removes it from the stack.

1 Visitor::visit_seqblock_pre()
2 manager.fork(UpdateSet::Type::Sequential)
3
4 Visitor::visit_seqblock_post()
5 manager.merge()
6
7 Visitor::visit_parblock_pre()
8 manager.fork(UpdateSet::Type::Parallel)
9

10 Visitor::visit_parblock_post()
11 manager.merge()
12
13 Visitor::visit_update()
14 manager.add(location, value)
15
16 Visitor::visit_function()
17 update = manager.lookup(location)
18 if update is absent {
19 return global_state.value(location)
20 } else {
21 return update.value()
22 }

Listing 3.1: Visitor Methods using the Update Set Manager

9

3. Update Set

The manager was added to simplify the usage of update set implementation in the AST
interpreter. Listing 3.1 shows more or less how the AST interpreter uses the update set
manager during execution.

3.2.4 Memory Allocator

While most systems use a very general memory allocator which supports allocation
and deallocation of arbitrary memory on the heap but which suffers from memory
fragmentation and decreased performance, casmi can make use of an optimized allocator
to make allocations and deallocations of updates fast due to the transactional semantics
of the language itself. While executing ASM rules casmi has to allocate an update
object for each update statement in the rule, at the end of the rule execution after the
update set has been merged back into the global state, all previously allocated update
objects have to be freed simultaneously. This ever-growing and release everything at once
behavior of casmi makes it perfectly suitable for an allocator which supports stack-like
allocation and deallocation. Ideally the freeing of all updates is just a matter of setting
the top of stack pointer to the bottom of the stack [Pau14].

Based on the idea from [Pau14] and [LK12] a fixed-size block allocator has been im-
plemented, which supports fast allocation of updates and deallocation of all updates
in one go. The block allocator requests fixed-size memory blocks from the memory
pool whenever a new block is needed, all blocks together form a single-linked list. The
memory pool is used to recycle unused blocks to avoid the invocation of the rather
expensive system allocator as good as possible. If the memory pool is empty the system
memory allocator will be used to allocate a block-size aligned memory block. Updates are
allocated by increasing the top of stack of the current block and returning the previous
top of stack memory address. Freeing of all updates is just a matter of iterating through
all blocks and put each block back into the memory pool.

Each block stores some management information along with the user data. The man-
agement information, which is stored below the user data, consists of the current top of
stack and a pointer to the previous block. Given that all blocks are block-size aligned
and the block-size must be a power of two, it is relatively simple to find the responsible
block for a given memory address. The memory address of the block can be calculated
by AB = AG&(∼(Blocksize− 1)) where AG denotes the given stack address and AB is
the address of the block, the operators are bitwise. With the help of the reset method,
which uses this technique, it is possible to use the memory allocator as a stack which
supports push and pop operations in addition to free all.

3.3 Update Set Size Prediction

To further improve the performance of the update set handling, a set of CASM rules have
been developed to predict the possible upper bound number of updates produced by each
execution block and CASM rule. These upper bounds can help to reduce the amount of

10

3.3. Update Set Size Prediction

rehashing by using a properly sized update set in the first place and they make it also
possible to eliminate the forking and merging of empty update sets. Additionally the
forking and merging of update sets with only a single update can be avoided, because
such updates can be directly committed to the enclosing update set. No size prediction
can be performed if a CASM rule contains recursive calls both directly and indirectly
through any chain of other CASM rules, or when a CASM rule contains unbounded
forall or iterate rules.

Rules:

Rule 3.3.1. U(f(t1, ..., tn) := t) = 1

Rule 3.3.2. U(P par Q) = U(P) + U(Q)

Rule 3.3.3. U(P seq Q) = U(P) + U(Q)

Rule 3.3.4. U(if ϕ then P else Q) = max(U(P), U(Q))

Rule 3.3.5. U(case ϕ of { c1 : P1, c2 : P2, ...,− : Pn}) = max(U(P1), U(P2), ..., U(Pn))

Rule 3.3.6. U(let x = t in P) = U(P)

Rule 3.3.7. U(rule r(t1, ..., tn) = P) = U(P)

Rule 3.3.8. U(call r(t1, ..., tn)) =
{

U(r(t1, ..., tn)) if caller 6= r
∞ otherwise

Rule 3.3.9. U(forall x in ϕ do P) =

0 if U(P) = 0

|ϕ| ∗ U(P) if ϕ is bounded
∞ otherwise

Rule 3.3.10. U(iterate P) =
{

0 if U(P) = 0
∞ otherwise

Rule 3.3.11. U(r) = 0 ... for all other rules

These rules have been implemented in a new AST interpreter pass which annotates the
AST nodes with the predicted number of updates. Given that no other optimizations like
redundant update elimination [Lez14] (causes overestimation of upper bound) or constant
folding/propagation (prevents loop bound estimation of Rule 3.3.9) are performed in
the AST interpreter the measurable performance improvement of this additional pass
is rather limited for most benchmarks. However in the IR interpreter [PZ16] where all
these optimizations are possible the outcome of the update set size prediction will be
useful for further optimization steps like preventing unnecessary update set forks, which
will result in a reduced number of bytecode instructions and memory allocations.

11

3. Update Set

This information can also be used to select the optimal data structure for the predicted
number of updates and thus emitting the correct bytecode instructions. For a small
number of updates a simple array is far more efficient than a fully fledged hash map.
In [Lez14] the idea of using arrays for small update sets has already been implemented,
but an array is always used regardless of the number of updates. If the array becomes
to large an expensive upgrade to a hash map has to be performed. This upgrade can
be completely avoided by using a hash map right from the beginning if the predicted
number of updates is big enough.

Example:
1 CASM
2
3 init GameOfLife
4
5 function alive : Integer * Integer -> Boolean defined { false }
6
7 derived aliveNeighbours(x : Integer, y : Integer) =
8 asInteger(alive(x - 1, y - 1)) +
9 asInteger(alive(x, y - 1)) +

10 asInteger(alive(x + 1, y - 1)) +
11 asInteger(alive(x - 1, y)) +
12 asInteger(alive(x + 1, y)) +
13 asInteger(alive(x - 1, y + 1)) +
14 asInteger(alive(x, y + 1)) +
15 asInteger(alive(x + 1, y + 1))
16
17 rule UpdateCell(x : Integer, y : Integer) = // 10. 1 update
18 let c = aliveNeighbours(x, y) in // 9. 1 update
19 if c = 3 then par // 7. max(1, 1) -> 1 update
20 alive(x, y) := true // 1. 1 update
21 endpar else if (c < 2) or (c > 3) then par
22 alive(x, y) := false // 1. 1 update
23 endpar
24
25 rule GameOfLife = // 10. 100 updates
26 forall x in [1..10] do // 12. 10 * 10 -> 100 updates
27 forall y in [1..10] do // 12. 10 * 1 -> 10 updates
28 call UpdateCell(x, y) // 11. 1 update

Listing 3.2: Update Set Size Prediction of Conway

Listing 3.2 demonstrates the use of the update set size prediction rules. Initially the
lines 20 and 22 are evaluated by applying the Rule 3.3.1, both lines produce exactly one
update. Then the enclosing if statement can be evaluated by applying the Rule 3.3.4.
Given that either the then or the else block of an if statement is executed, the upper
bound can simply be determined by taking the maximum value of both blocks without
the need of any knowledge about the if condition. In this example the maximum number
of updates produced by the if statement is one and so the resulting upper bound of

12

3.4. Comparison

updates produced by the UpdateCell CASM rule is one. The call on line 28 produces
at most one update because of the upper bound of UpdateCell. By applying the Rule
3.3.9 to the forall loop on line 27 we get a maximum number of 10 updates because
the interval 1..10 causes exactly 10 loop iterations and every loop iteration produces one
update when assuming the worst case scenario. Doing the same for line 26 gives the
maximum number of 100 updates which is the upper bound of updates produced by the
GameOfLife CASM rule. Given that the UpdateCell CASM rule produces only a single
update, no update set forking is required when calling this rule, thus the update produced
by UpdateCell could directly be committed to the update set of the inner forall loop of
the GameOfLife CASM rule without any intermediate update sets.

3.4 Comparison

The legacy implementation uses the concept of pseudo states [Pau14] to represent the
nested composition of update sets. A pseudo state basically reflects the depth of the
nested composition, starting with 0, and the type of the execution block. An even number
equals a block with parallel and an odd number equals a block with sequential execution
semantics. Whenever an update set has to be forked or merged, the pseudo state counter
has to be increased or decreased. The keys for the update set are 64 bit values, where the
bits 0-15 reflect the pseudo state of the corresponding block of an update, the remaining
bits are filled with lower bits of the memory address of the slot which holds the location
value. As stated in [Lez14] this has some (theoretically) limitations like a maximum
number of 65536 nested states and possible key collisions if the memory addresses of
the slots only differ in the uppermost 16 bits. Additionally this key composition has
some negative effects on the quality of the hash code especially when using bit-mask
compression which will be discussed in Chapter 4. The new implementation doesn’t have
such limitations. The maximum number of nested states is theoretically unlimited and it
supports the full 64 bit memory space without producing key collisions because the key
for the update set is basically the memory address of the slot which holds the location
value.

While the old implementation spread the update set handling all over the AST execution
code, the new implementation properly encapsulates all this to make it easier to under-
stand and use, easier to unit test and also reusable so that this module can be shared
between the AST and IR interpreter. This results in a clean separation between update
set handling and AST execution.

Another advantage over the legacy implementation is that sequential and parallel executing
semantics can freely be mixed without being restricted to the pseudo state and it’s also
possible to start with sequential execution blocks, which was previously impossible due to
the pseudo state limitation. This has greatly simplified the implementation of the numeric
and symbolic AST interpreter. All restrictions, checks and work arounds to get the correct
pseudo state, e.g. by wrapping the top-level block of a rule with a parallel execution
block when the top-level block is a sequential execution block, could be dropped.

13

3. Update Set

Given that in the new implementation the consistency of the update set is checked at the
time of insertion of an update and that the new implementation uses one hash map for
each update set it is possible to optimize some special cases. Merging of an update set
into an parent update set which is empty can be optimized by simply swapping the hash
tables of both update sets, this avoids a huge amount of rehashing.

Currently the interpreter uses the memory address of the function location object as key
for the update set as described above. But the new update set implementation doesn’t
necessarily rely on such integer keys contrary to the legacy implementation. The key can
also be for example a real location object which contains the function and the arguments,
which is more similar to the notation of an ASM location (see Definition 3.1.3).

14

CHAPTER 4
Location Hashing

4.1 Terminology
The initial bucket is the bucket, which a given entry initially maps to without doing any
collision resolution.

The probe sequence length (PSL) is the length of a sequence of hash map entries, starting
from the initial bucket, which needs to be checked when searching or inserting entries
into the hash map.

4.2 Hashing Schemes
Inserting various entries into a hash map causes collisions sooner or later. To resolve such
collisions efficiently different collision resolution strategies have been developed in the
last few decades (see [RAD15]). For this thesis four well-known and widely used hashing
schemes have been selected. Each one has been implemented and evaluated in regard to
casmi’s requirements.

4.2.1 Chained Hashing

Chained hashing [CSRL01] is a relatively simple collision handling approach. Each bucket
maintains a list of entries, which belong to the same initial bucket. An entry can be
retrieved by iterating through the entry list of the initial bucket until an entry for the
given key could be found or the end of the list is reached, in this case no entry with
the given key exists in the hash map. The insertion of a new entry is just a matter
of appending the entry to the entries list of the initial bucket. This collision handling
approach may provide sub-optimal performance due to the additional cache misses which
occur while traversing the linked-list and thus some slightly optimized versions of this
approach exist (see [RAD15]).

15

4. Location Hashing

4.2.2 Linear Probing

Linear probing [CSRL01] is a well known open addressing scheme. It uses the hashing
function hl(k, i) = (h′(k) + i) mod m to resolve collisions, where h′(k) is a hashing
function for key k, m is the capacity of the hash map and i denotes the probing iteration.
The probing starts from the initial bucket and on each iteration the index of the bucket,
which is to be inspected is calculated by hl(k, i). The probing can be aborted either when
a bucket for the given key could be found or if the currently inspected bucket is empty,
in this case it’s guaranteed that no bucket for the given key exists in the hash map.

4.2.3 Quadratic Probing

Quadratic probing [CSRL01] is another widely used open addressing scheme. It uses the
hashing function hq(k, i) = (h′(k) + c1 ∗ i + c2 ∗ i2) mod m to resolve collisions, where
h′(k) is a hashing function for key k, m is the capacity of the hash map and i denotes the
probing iteration. The choice of the constants c1 and c2 together with the capacity m are
crucial to eventually reach all buckets of the hash map. Using c1 = c2 = 1/2 as well as a
a power of two capacity gurantees that every bucket will be considered in worst-case (see
[CSRL01]). This makes it possible to replace the expensive modulo operation of hq(k, i)
by fast bit-masking. The probing procedure is the same as in linear probing but using
hq(k, i) instead of hl(k, i).

4.2.4 Robin Hood hashing

Robin Hood hashing was introduced by Pedro Celis in [Cel86] as a reordering scheme
which only requires minor modifications to standard search and insertion algorithms. In
this thesis this reordering scheme will be used on top of linear probing [RAD15]. The
main difference compared to the normal linear probing is that entries which are already
stored in the hash map may be moved as new entries are inserted into the hash map.
The idea behind it is to reduce the maximum PSL of the hash map by moving the entries
around based on the distance to their initial bucket. The reordering basically minimizes
the variance in distance to the initial bucket for all entries. According to [Cel86] this
results in a very efficient hash map due to the fact that the probe sequence length has a
small and almost constant variance, it requires far less probes on average to perform a
successful search even when the table is almost full. Each bucket stores the PSL of the
entry it holds, this information is used to optimize the look up of entries. The probing
procedure is the same as in linear probing with the addition that the probing can also be
aborted if the current probing distance is larger than the stored PSL of the currently
inspected bucket.

4.3 Arguments Hashing Approaches

The goal of the arguments hashing is to reduce the multidimensional function arguments
to a single value, which can then be used in a hash table. Hash collisions, meaning that

16

4.4. Implementation

different function arguments produce the exact same hash value, should be avoided as
good as possible while avoiding the huge computational overhead of cryptographic hash
functions.

4.3.1 FNV-1A

The FNV algorithm was created by Fowler, Noll and Vo in 1991 and is specified in [FNV].
It is a non-cryptographic hash function which can produce 32-, 64- and up to 1024-bit
hash values. FNV-1A is a slightly modified version of the basic FNV which has a better
avalanche characteristic [FNV], meaning a small change in the input changes the output
significantly. This algorithm has the advantage that it is really easy to implement, it
needs only a few lines of code and it can easily be reused on 32- and 64-bit systems by
simply using a different offset basis and fnv prime.

4.3.2 Murmur3

The Murmur3 [App] hashing algorithm is another widely adopted hash function which
was created by Appleby in 2008. It was designed as a fast and non-cryptographic hashing
algorithm which produces high quality hashes. Optimized version for 32- and 64-bit
systems are available.

4.3.3 SipHash

SipHash was introduced by Aumasson and Bernstein in [AB12] as a pseudo random
function optimized for short inputs with well-defined security goals to protect hash-tables
against hash-flooding denial-of-service attacks. It is a keyed cryptographic hash function
which computes a 64-bit hash from a 128-bit secret key and a variable-length data array.
The results in [AB12] show that this algorithm is almost on par with other state-of-the-art
non-cryptographic hashing algorithms. The authors of [AB12] propose that SipHash
should be used as a hash function for hash tables.

4.4 Implementation
All the different hash map implementations share a common base class which provides
all the required methods and iterators to the user. Each hash map type specializes
this base class and provides the implementation for searching and inserting new hash
map entries as well as the structure of entries and buckets. These specialized methods
and structures are used in the base class to provide insert, insert-or-assign and lookup
methods. No remove methods are provided basically because they aren’t needed in
casmi’s use case. The implementation of the hash map makes it relatively easy to switch
between different compression functions and resizing behaviors, the default compression
function is masked-hashing with simply doubling the capacity on each resize. Hash map
entries are allocated using the previously introduced block allocator (see Chapter 3.2.4),
this avoids a huge amount of small entry allocations, which usually happens with chained

17

4. Location Hashing

hashing. This is possible because the user can only add new items to the hash map
during the life time of the hash map and on destruction all previously allocated entries
are freed simultaneously. All entries have a link to their predecessor, basically forming a
single-linked list which is used by the hash map iterator. Due to the fact that all entries
are allocated in blocks, a good memory locality can be achieved when using the chained
hashing approach.

The function arguments are basically a collection of casmi value objects, each one
storing the value type and the actual data which can also be a pointer to another data
structure. Because of this the data of the arguments are distributed in memory, thus
it isn’t possible to use existing implementations of the mentioned hashing algorithms
which operate on a contiguous block of memory. Instead the hash algorithms have been
re-implemented so that they can operate on casmi’s value objects directly. Given that
the hashing of function arguments is relatively costly, each bucket caches the calculated
hash value.

The global state is modeled as a list of hash maps. Each CASM function has a specified
id, a monotonically increasing number, which is used as a list index. For each function a
hash map exists which stores the location value pairs.

4.5 Comparison
The old version of casmi used a pretty simple algorithm to compute hash codes from
function arguments (see [Hah14]). It simply summed up the hash values of all arguments
and returned the final value (see Algorithm 1). While this was a really fast hashing
function (in terms of cpu cycles per byte) it produced a huge amount of hash collisions.
This had the dramatic consequence that the performance of the function states, which
were using hash tables from the C++ stdlib internally to achieve constant lookup and
insertion times, dropped significantly and the hash tables of the function states basically
became linked lists with linear lookup and insertion times. For example in the Conway
specification (see Listing 3.2) the function arguments (4, 0), (3, 1), (2, 2), (1, 3), (0, 4) of
the alive function would all produce the exact same hash code when using Algorithm 1.
This made the execution time of CASM specifications basically unpredictable slow in
some situations.

Algorithm 1 Legacy arguments hashing [Hah14]
1: function ArgumentsHash(args)
2: h← 0
3: foreach arg ∈ args do
4: h← h + ValueHash(arg)
5: end foreach
6: return h
7: end function

18

CHAPTER 5
Evaluation

In this section the performance and memory efficiency of casmi will be compared to the
legacy interpreter [Inf13] denoted as casmi-legacy. Additionally the performance of
the interpreter will be compared to the CoreASM interpreter [FGG07]. Sadly it wasn’t
possible to compare it to Hahn’s version of casmi [Hah14] because there was no running
version of his interpreter available. The memory and runtime measurements include
everything from starting the interpreter until the interpretation of the specification is
done and the process has finished.

5.1 Environment

The hard- and software configuration of the machine which was used for running the
benchmarks are described in Table 5.1 and additionally the applied flags are described in
Table 5.2. The new and the legacy version of casmi have been compiled within the same
environment. Commit e02dd07 of the libcasm-fe repository together with the commit
be1941d of the casmi repository have been used to compile casmi.

5.2 CASM Specifications

The performance and memory evaluation has been performed with multiple different
CASM specifications. The Conway benchmark is based on the Conway ASM specification
from [BS03]. The Updateset benchmark has been written by Paulweber, as part of
his work on [Pau14], as a stress test for the update set implementation. The other
benchmarks have been written by Hahn and Lezuo as part of their work on casmi
(see [LK12] and [Hah14]) and those benchmarks were already used in earlier CASM
interpreter and compiler evaluations. All of these benchmarks have also been adapted to
casmi-legacy as well as the CoreASM interpreter.

19

5. Evaluation

CPUs Intel Core i7-6700k (4.00GHz, 8MB Cache)
Main Memory 16GB DDR4-2133 (2 x 8GB)
Operating system Linux 64 bit (Arch Linux)
Compiler clang 3.9.1 (Arch 3.9.1-2) 20170126
Heap Profiler Massif (valgrind-3.12.0)
Java OpenJDK (build 1.8.0_121-b13)
Python 3.6.0
pytest 3.0.6

Table 5.1: Hard- and Software Configuration of the Benchmarking Environment

Clang -std=c++11 -Wall -O3 -DNDEBUG
Massif –stacks=yes –heap=yes
casmi –ast-exec-num
casmi-legacy (Conway) -M 55
CoreASM -y -p

Table 5.2: Applied Flags

The Bubblesort benchmark iteratively sorts 200 items using the bubble sort algorithm.
This benchmark performs a huge amount of steps, on each step a relatively small update
set will be applied to the global state.

The Conway benchmark implements the well-known cellular automaton introduced by
Conway in [Con70]. The universe is an infinite two-dimensional grid. Each grid cell
can either be dead or alive. The next state of each cell depends on the actual state
of its neighboring cells. The transition rules determine if a cell dies or becomes alive.
The evolution of the cellular automaton depends on its initial state. The Conway
benchmark uses an initial state1 where all cells have died after 54 generations, meaning
that the interpretation will stop because no further transitions can be made. This
benchmark produces only medium-sized update sets on each step but performs a lot of
function lookups in the two-dimensional grid. This is the only benchmark which uses
multi-dimensional function locations.

The Fibonacci benchmark calculates the fibonacci number of 7500 using a linear pro-
gramming approach. Due to the current representation of integer numbers in casmi
(64-bit signed integer) the outcome isn’t correct because of overflows. This benchmark
produces only a single but relatively huge update set and heavily relies on recursion.

The Quicksort benchmark sorts 300 items using the quick sort algorithm and produces
small update sets. The Sieve benchmark is a prime siever which determines all prime

1https://de.wikipedia.org/wiki/Datei:Game_of_life_U.gif

20

https://de.wikipedia.org/wiki/Datei:Game_of_life_U.gif

5.3. Execution Time

numbers between 0 and 10000, this produces one huge update set. Both benchmarks
heavily rely on sequential execution.

The Gray benchmark calculates gray codes for all 16-bit numbers. This benchmark
heavily relies on arithmetic operations and rule invocations.

Finally the Updateset benchmark performs a huge number updates, forks and merges,
testing the overall performance of the update set implementation. It interleaves parallel
and sequential scopes and overrides the same locations a good few times.

5.3 Execution Time

Benchmark casmi casmi-legacy CoreASM
Bubblesort 2,183.54 ms 5,784.10 ms -
Conway 1,069.45 ms 4,632.15 ms 23,557.2 ms
Fibonacci 16.03 ms 26,500.64 ms 45,518.5 ms
Gray 3,069.30 ms 7,339.59 ms 102,472.5 ms
Quicksort 26.18 ms 83.87 ms -
Sieve 29.72 ms 253.76 ms 21,272.2 ms
Updateset 4,202.57 ms 16,923.18 ms 287,136.6 ms

Table 5.3: Execution Times of Different Benchmarks

Benchmark casmi-legacy/casmi CoreASM/casmi
Bubblesort 2.65 -
Conway 4.33 22.03
Fibonacci 1,652.91 2,839.10
Gray 2.39 33.39
Quicksort 3.20 -
Sieve 8.54 715.70
Updateset 4.03 68.32

Table 5.4: Speedup of casmi compared to casmi-legacy and CoreASM

Table 5.3 shows the minimum execution time of at least five repetitions measured by
Pytest. Table 5.4 shows the achieved speedup of casmi compared to casmi-legacy
and CoreASM.

The performance improvements (expect of conway) are mostly on par with the results
of Hahns interpreter (see [Hah14]). Yielding the same performance is a good outcome,
given that a lot of missing value validations and sanity checks have been added to the
interpreter. Furthermore, the function arguments hashing algorithm (see Section 4.3)
has also been replaced by another one to avoid a huge amount of key collision when

21

5. Evaluation

using multi-dimensional functions. All these changes together with the more advanced
memory handling produce a lot of additional overhead when executing these relatively
small benchmarks.

5.4 Memory Consumption
The memory consumption has been measured with Massif which is part of the Valgrind
analysis framework2. Heap and stack profiling has been enabled. The graphs and memory
peak statistics have been generated via the open source tool Massif-Visualizer3.

Bubblesort 5.6a creates the items before sorting, so the heap as well as the stack
consumption is constant while sorting the items.

Conway 5.6c generates a lot of living cells at the start, thus the fast increase in the
memory consumption at the very beginning. As soon as no new cells are generated the
memory consumption is constant. The memory consumption isn’t decreasing because
dead cells are not deleted from the global state.

Fibonacci 5.6e uses recursion thus the fast (stack) memory increase in the first quarter.
The memory usage is constantly decreasing after the peak because the algorithm just
uses the partial results from the rule calls and calculates the result.

Gray 5.6g only uses a fixed number of temporary variables for the conversion. The gray
codes are only displayed on the screen but not stored in the global state, thus the memory
consumption of this benchmark is constant.

Quicksort 5.6i creates the items before sorting. During the sorting process it uses a stack
to store the current start and end positions, thus the small increase in memory during
sorting.

Sieve 5.6k constantly computes new values and adds them to the temporary state thus
the constant increase in the memory consumption.

Updateset 5.6m has an almost constant memory consumption because each step produces
the exact same number of updates. Thus only the first step has to allocate memory, all
subsequent steps can just reuse it.

When comparing casmi to casmi-legacy the average peak memory usage for these
benchmarks has decreased by about 99,08%. This is a clear improvement over the old
one which in turn enables us to execute industrial-scale CASM specifications in casmi.

All benchmarks also show that the memory consumption of casmi-legacy is constantly
increasing and one benchmark even runs out of memory pretty soon. Please note that
the interpreter can not make use of the whole 16GB memory while running under massif,
because massif keeps the heap snapshots in memory. Thus the updateset benchmark runs
out of memory while running under massif but works fine when running without massif.

2http://valgrind.org/
3https://cgit.kde.org/massif-visualizer.git

22

http://valgrind.org/
https://cgit.kde.org/massif-visualizer.git

5.4. Memory Consumption

Benchmark casmi casmi-legacy Consumption Decrease
Bubblesort 222.22 KiB 1.73 GiB 99.988%
Conway 275.01 KiB 1.07 GiB 99.975%
Fibonacci 6.20 MiB 5.62 GiB 99.892%
Gray 317.89 KiB 2.54 GiB 99.988%
Quicksort 352.95 KiB 30.02 MiB 98.852%
Sieve 5.00 MiB 117.89 MiB 95.759%
Updateset 581.39 KiB Out of memory -

Table 5.5: Peak Memory Consumption

(a) Bubblesort (casmi) (b) Bubblesort (casmi-legacy)

(c) Conway (casmi) (d) Conway (casmi-legacy)

(e) Fibonacci (casmi) (f) Fibonacci (casmi-legacy)

(g) Gray (casmi) (h) Gray (casmi-legacy)

23

5. Evaluation

(i) Quicksort (casmi) (j) Quicksort (casmi-legacy)

(k) Sieve (casmi) (l) Sieve (casmi-legacy)

(m) Updateset (casmi)

Table 5.6: Heap + Stack Memory Profiles (casmi vs. casmi-legacy)

5.5 Arguments Hashing

The different hashing algorithms are compared by using stencil codes. Stencil codes
were chosen because they require iterative updating of cells, which results in a huge
amount of reads and writes to different cells and because they can easily be extended to
multi-dimensional problem spaces. This makes it perfectly suitable to test the different
multi-dimensional arguments hashing approaches, the number of dimensions directly
corresponds to the number of arguments of the data and kernel functions. Each dimension
of data function has the length five and each dimension of kernel function has the length
three. This means that data contains exactly 5d and kernel exactly 3d cells, where d
denotes the number of dimensions. The stencil operation is applied to each data cell
exactly once.

24

5.6. Hash Maps

Dimensions FNV-1A Murmur3 SipHash Legacy
2 2.25 ms 2.38 ms 2.28 ms 2.30 ms
3 3.26 ms 3.14 ms 3.13 ms 3.59 ms
4 20.78 ms 19.00 ms 19.37 ms 44.19 ms
5 324.30 ms 285.97 ms 293.59 ms 2,294.58 ms
6 5,437.64 ms 4,659.83 ms 4,857.01 ms 167,112.40 ms

Table 5.7: Execution Times of Different Hashing Algorithms

Table 5.7 shows the minimum execution times out of at least five rounds. The FNV-1A
algorithm is the fastest one for the two-dimensional stencil problem, but with growing
number of dimensions it clearly loses the competition. Murmur3 is the fastest one for
the six-dimensional stencil problem and also has the best overall performance. As the
authors of SipHash already stated in [AB12], SipHash performs quite well compared to
the other hashing functions while providing stronger security goals. The benchmarks
also clearly show that the legacy approach didn’t scale well with a growing number of
function arguments, although it’s the fastest for zero- and one-dimensional functions.

The Murmur3 algorithm has been selected as the default hashing algorithm for casmi,
both for 32- and 64-bit architectures. It may be worth to check out the Murmur inspired
CityHash [PA] and its successor FarmHash [Pik], both promise better performance by
making use of modern CPU features.

5.6 Hash Maps

The maximum probe sequence length (PSL) of the hash map search operation has been
measured using different types of hash maps. Each benchmark was repeated 25 times
and the maximum number of all runs was selected. A maximum load factor of 1.0 was
used for chained hashing and 0.5 for the other hash map types. Table 5.8 shows the
maximum PSL of hash maps used to store the updates of an update set. Table 5.10
shows the maximum PSL of hash maps used to hold the function states. In addition
to the maximum PSL some other interesting hash map related numbers were collected.
Table 5.9 shows the number of reads, failed reads and writes of update set hash maps,
Table 5.11 shows the same numbers for function state hash maps. Please note that the
number of reads and writes is independent from the selected hash map type and load
factor.

Table 5.8 and Table 5.10 show that the maximum PSL of the Updateset benchmark is
always 0. The reason for that is that this benchmark contains only three 0-ary functions,
resulting in collision free inserts and lookups.

As seen in Table 5.9 Conway, Bubblesort and the Stencil benchmarks never perform any
lookups in the update set hash map. The reason for that is that these benchmarks are

25

5. Evaluation

Benchmark Linear Probing Quadratic
Probing

RH Hashing Chained Hash-
ing

Bubblesort 1 1 2 0
Conway 24 10 3 0
Fibonacci 580 35 157 2
Gray 0 0 0 1
Quicksort 3 3 2 0
Sieve 791 37 238 13
Updateset 0 0 0 0
Stencil2 1 1 1 0
Stencil3 1 2 1 0
Stencil4 4 7 2 0
Stencil5 316 28 31 0
Stencil6 693 36 244 0
Average 201 13 56.8 1.3

Table 5.8: Maximum Search Probe Sequence Length (update set)

Benchmark Reads Failed Reads Writes Failed Reads (%)
Bubblesort 0 0 4,141,009 0.00
Conway 0 0 3,530 0.00
Fibonacci 67,488 37,490 11,253 55.55
Gray 8,454,144 2,162,688 5,308,420 25.58
Quicksort 275,998 163,348 95,110 59.18
Sieve 270,313 74,065 194,820 27.40
Updateset 54,814,467 246,912 33,456,587 0.45
Stencil2 0 0 27 0.00
Stencil3 0 0 127 0.00
Stencil4 0 0 627 0.00
Stencil5 0 0 3,127 0.00
Stencil6 0 0 15,627 0.00
Average 14.01

Table 5.9: Hash Map Read/Write Statistics (update set)

only using parallel execution semantics and thus function values are only retrieved from
the global state but never from the temporary states (see Definition 3.1.8).

Table 5.11 clearly shows that the function state hash maps are read dominated. This
is because each function update and lookup always involves exactly one lookup in the
function state (see Chapter 3.4). Writing into a function state only happens the first time
a specific location is updated, all subsequent updates of the same location only perform

26

5.6. Hash Maps

Benchmark Linear Probing Quadratic
Probing

RH Hashing Chained Hash-
ing

Bubblesort 10 6 4 3
Conway 21 14 6 3
Fibonacci 27 11 6 2
Gray 1 1 1 1
Quicksort 10 7 4 2
Sieve 27 12 6 5
Updateset 0 0 0 0
Stencil2 2 2 2 0
Stencil3 5 3 2 1
Stencil4 16 9 5 3
Stencil5 27 15 8 4
Stencil6 39 17 12 5
Average 15.4 8.1 4.7 2

Table 5.10: Maximum Search Probe Sequence Length (function state)

Benchmark Reads Failed Reads Writes Failed Reads (%)
Bubblesort 29,796,713 204 204 0.00
Conway 4,949,365 4,799,189 471 96.97
Fibonacci 45,003 15,003 7,502 33.34
Gray 11,730,950 50 50 0.00
Quicksort 335,408 612 312 0.18
Sieve 280,219 10,004 10,004 3.57
Updateset 87,653,770 5 5 0.00
Stencil2 478 404 26 84.52
Stencil3 6,878 5,840 126 84.91
Stencil4 101,878 87,908 626 86.29
Stencil5 1,521,878 1,337,792 3,126 87.90
Stencil6 22,796,878 20,391,284 15,626 89.45
Average 47.26

Table 5.11: Hash Map Read/Write Statistics (function state)

a function state lookup. This behavior is denoted as branding (see [Pau14]). Firing of
updates doesn’t involve any writes into the function state hash map because an update
already knows the exact memory location of the function state value which needs to be
overridden, thus the number of writes is relatively low compared to the number of reads.

As seen in Table 5.8 and Table 5.10 chained hashing has the smallest maximum PSL in
both scenarios. When using an open addressing hash table, then quadratic probing has

27

5. Evaluation

Fibonacci Quicksort Sieve Stencil2 Stencil3 Stencil4
0

10

20

30

40

Ex
ec

ut
io

n
Ti

m
e

(m
ill

is
ec

on
ds

)

Chained Hashing
Linear Probing (load factor: 0.5)
Linear Probing (load factor: 0.9)
Quadratic Probing (load factor: 0.5)
Quadratic Probing (load factor: 0.9)
Robin Hood (load factor: 0.5)
Robin Hood (load factor: 0.9)

file:///home/emmanuel/Uni/6. Semester/Bachelorarbei...

1 of 1 03/01/17 21:18

Bubblesort Conway Gray Stencil5 Stencil6 Updateset
0

1000

2000

3000

4000

5000

6000

Ex
ec

ut
io

n
Ti

m
e

(m
ill

is
ec

on
ds

)

file:///home/emmanuel/Uni/6. Semester/Bachelorarbei...

1 of 1 03/01/17 21:17

Figure 5.1: Execution Times of Different Hash Maps under Different Load Factors

the smallest maximum PLS in the update set scenario and robin hood hashing has the
smallest maximum PLS in the function state scenario.

Figure 5.1 shows the execution times of different hash maps using different load factors.
The maximum load factor of the hash map using chained hashing is always 1.0, the other
hash map types were benchmarked using a maximum load of 50% and 90%. Chained
hashing is always the fastest one when the number of failed reads of updates is above
20%. All in all the performance of different hash map types are pretty close together and
no clear winner could be selected. For these relatively small CASM specifications the
chained hashing approach is the best one and thus this hash map type has been selected
as the default one for the time being. It would definitely be interesting to repeat those
benchmarks in future once the IR interpreter is ready and bigger CASM specifications, if
possible also from real-world projects, are available.

28

CHAPTER 6
Conclusion

This thesis presents an improved version of casmi based on the work done by Hahn
as part of his bachelor thesis [Hah14], Paulweber as part of his master thesis [Pau14]
and Lezuo as part of his PhD thesis [Lez14]. Missing proprietary parts have been re-
implemented in order to provide casmi as free and open source CASM interpreter and a
lot of different areas have received significant improvements and clean-ups.

The new update set implementation was one of the major goals of this thesis. It provides
a fully tested and reusable component, which can later be reused in the IR interpreter
[PZ16]. The design of this component makes it easy to understand and straightforward
to use. Furthermore, a set of rules have been shown to predict the number of updates of
ASM rules. This prediction can be used to reduce the amount of rehashing in update
sets, which occurs when more updates are inserted into the update set than slots were
previously reserved.

The overall memory consumption of casmi has been drastically reduced as seen in
Section 5.4. casmi is now able to run industrial-scale CASM specifications with only
a relatively small memory footprint, whereas the legacy version ran out of memory in
a matter of seconds. Additionally the hashing of function arguments has been greatly
improved. casmi is now able to easily cope with multi-dimensional functions, especially
the performance in case of many function arguments has been significantly increased as
seen in Section 5.5.

6.1 Future Work

The update set size prediction described in section 3.3 could be implemented as an IR
optimization pass. This would make it possible to optimize away needless fork and merge
operations and to generate optimized byte code for different update set sizes (array based
update set for small numbers vs. hash map based update set for larger numbers).

29

6. Conclusion

The predicted number of updates can also be used to reorder the statements of a parallel
execution block depending on their expected update set size. Given that the update
set of a statement can be merged into its parent update set by simply swapping its
internal data structure (see Section 3.4) when the parent update set is empty, the amount
rehashing and resizing of update sets could be reduced.

The current value handling of casmi, which was implemented as part of the legacy
interpreter, still has some memory leaks when using Strings or other non-trivial value
objects. This has not be fixed in the current version because the value handling will be
replaced by the IR implementation in future, so that builtins and other implementation
aspects can be shared more easily between the AST and IR interpreter (see [PZ16] for
an architectural overview).

The type checker, which was developed by Hahn as part of his bachelor thesis [Hah14],
still has some major problems with type inference. Also undef and symbolic values are
currently un-typed, meaning that the value object loses its original type when assigning
undef or a symbol to it. This has the drawback that the interpreter treats e.g. an
undef -Integer the same as an undef -String. This can be fixed by replacing the Undef
and Symbolic type with boolean values indicating if the value is undef or symbolic.

Finally, support for first-order logic expressions should be added to casmi to make
specifications easier to write and understand. CoreASM already has a syntax for existential
and universal quantifiers, maybe this syntax can be used in CASM as well. Listing 6.1
shows a railway crossing specification1 written in CASM. Listing 6.2 shows the same
example but with an universal quantifier instead of writing the same logic formula for
each member of the Rail domain. The syntax used in Listing 6.2 is equal to the CoreASM
syntax.

1 derived safeToOpenGate =
2 (status(rail1) = notrain or (now + opendelay) < deadline(rail1)) and
3 (status(rail2) = notrain or (now + opendelay) < deadline(rail2)) and
4 ... and
5 (status(rail3) = notrain or (now + opendelay) < deadline(railn))

Listing 6.1: Railway Crossing Example with Current Syntax

1 derived safeToOpenGate =
2 forall r in Rail holds
3 status(r) = notrain or (now + opendelay) < deadline(r)

Listing 6.2: Railway Crossing Example with Universal Quantifier

1https://github.com/CoreASM/coreasm.core/blob/master/org.coreasm.engine/
test-rsc/without_test_class/RailroadCrossing.coreasm

30

https://github.com/CoreASM/coreasm.core/blob/master/org.coreasm.engine/test-rsc/without_test_class/RailroadCrossing.coreasm
https://github.com/CoreASM/coreasm.core/blob/master/org.coreasm.engine/test-rsc/without_test_class/RailroadCrossing.coreasm

Bibliography

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input
PRF, pages 489–508. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[App] Austin Appleby. MurmurHash3. https://github.com/aappleby/
smhasher. [Online; accessed 23-02-2017].

[BS03] Egon Böger and Robert Stark. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer, 2003.

[Cel86] Pedro Celis. Robin Hood Hashing. PhD thesis, Waterloo, Ont., Canada,
Canada, 1986.

[Con70] John Conway. The game of life. Scientific American, 223(4):4, 1970.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[FGG07] Roozbeh Farahbod, Uwe Glässer, and Vincenzo Gervasi. CoreASM: An
extensible ASM execution engine. Fundamenta Informaticae, 77(1-2):71–103,
2007.

[FNV] Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo. The FNV
Non-Cryptographic Hash Algorithm. https://tools.ietf.org/html/
draft-eastlake-fnv-12. [Online; accessed 31-01-2017].

[Gur95] Yuri Gurevich. Specification and Validation Methods. chapter Evolving
Algebras 1993: Lipari Guide, pages 9–36. Oxford University Press, Inc., New
York, NY, USA, 1995.

[Hah14] Florian Hahn. Introducing CASMI, an AST Interpreter for CASM. 2014.
Wien, Techn. Univ., Bac. Thesis.

[Inf13] Dominik Inführ. AST interpreter for CASM. 2013. Wien, Techn. Univ., Bac.
Thesis.

31

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://tools.ietf.org/html/draft-eastlake-fnv-12
https://tools.ietf.org/html/draft-eastlake-fnv-12

[LBK13] Roland Lezuo, Gergö Barany, and Andreas Krall. CASM: Implementing an
Abstract State Machine based Programming Language. In Software Engi-
neering 2013 - Workshopband (inkl. Doktorandensymposium), Fachtagung des
GI-Fachbereichs Softwaretechnik, Aachen, Germany, February 26 - March 1,
2013, pages 75–90, 2013.

[Lez14] Roland Lezuo. Scalable translation validation; tools, techniques and framework.
2014. Wien, Techn. Univ., Diss.

[LK12] Roland Lezuo and Andreas Krall. A Unified Processor Model for Compiler
Verification and Simulation Using ASM, pages 327–330. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[LPK14] Roland Lezuo, Philipp Paulweber, and Andreas Krall. CASM: Optimized
Compilation of Abstract State Machines. In Proceedings of the 2014 SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems, LCTES ’14, pages 13–22, New York, NY, USA, 2014. ACM.

[PA] Geoff Pike and Jyrki Alakuijala. CityHash, a family of hash functions for
strings. https://github.com/google/cityhash. [Online; accessed 23-
02-2017].

[Pau14] Philipp Paulweber. An optimizing compiler for the abstract state machine
language CASM. 2014. Wien, Techn. Univ., Dipl.-Arb.

[Pik] Geoff Pike. FarmHash, a family of hash functions. https://github.com/
google/farmhash. [Online; accessed 23-02-2017].

[PZ16] Philipp Paulweber and Uwe Zdun. A Model-Based Transformation Approach
to Reuse and Retarget CASM Specifications. In Abstract State Machines,
Alloy, B, TLA, VDM, and Z - 5th International Conference, ABZ 2016,
Lecture Notes in Computer Science 9675, pages 250–255, May 2016.

[RAD15] Stefan Richter, Victor Alvarez, and Jens Dittrich. A Seven-dimensional
Analysis of Hashing Methods and Its Implications on Query Processing. Proc.
VLDB Endow., 9(3):96–107, November 2015.

[Sch01] Joachim Schmid. Compiling Abstract State Machines to C++. Journal of
Universal Computer Science, 7(11):1068–1087, nov 2001.

32

https://github.com/google/cityhash
https://github.com/google/farmhash
https://github.com/google/farmhash

	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Methodological Approach
	CASM Language

	Related Work
	ASM Interpreters
	Update Set Handling
	Hashing Methods

	Update Set
	Definitions
	Implementation
	Update Set Size Prediction
	Comparison

	Location Hashing
	Terminology
	Hashing Schemes
	Arguments Hashing Approaches
	Implementation
	Comparison

	Evaluation
	Environment
	CASM Specifications
	Execution Time
	Memory Consumption
	Arguments Hashing
	Hash Maps

	Conclusion
	Future Work

	Bibliography

